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This report was completed in late 1981. In view of the long
delay of publication (1985), it is appropriate to note that con- 4
QUALIry
&_.

W) siderable progress has since been made in some of the subject areas
I discussed herein. For updated information the reader is referred to
tnhe following papers and reports:
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3. Modeling of Plain Concrete

Y

B Valanis, K. C. and H. E. Read, "An Endochronic Plasticity
LY Theory for Concrete,” Proc. Second Symp. on the Interaction of
4 Non-Nuclear Munitions with Structures, Panama City Beach,
%7, Florida, April 1985.

‘43

K. Valanis, K. C., and H. E. Read, "An Endochronic Plasticity
=+ Theory for Concrete," Mechanics of Materials, Vol. 4, No. 2,
. 1985,

g

H

i Lade, P. V., "Three-Parameter Failure Criterion for Concrete,"
X J. Engng. Mech. Div., ASCE, Vol. 108 (EM5), 1982,

4

' Modeling of Reinforced Concrete

¢

4 Hegemier, G. A., and H. Murakami, "A Nonlinear Theory for
o Reinforced Concrete," Proc. Second Sy;g, on the Interaction of
ﬁ Non-Nuclear Munitions with Structures, Panama City Beach,

¥ Florida, April 1985,

‘ Hegemier, G. A., H. E. Read, H. Murakami, L. J. Hageman, and
‘i R. G. Herrmann, "Development of Advanced Constitutive Model

for Reinforced Concrete," S-CUBED Second Annual Report to the
AFOSR, SSS-R-83-6112, April 1983.

v A

Hegemier, G. A., H. E. Read and H. Murakami, "Development of
Advanced Constitutive Model for Reinforced Concrete," S-CUBED
Final Report to the AFOSR, SSS-R-84-6684, April 1984,

Hegemier, G. A., H. Murakami, and L. J. Hageman, "On Tension
Stiffening in Reinforced Concrete," Mechanics of Materials,
Vol. 4, No. 2, 1984,

- o m W e

Murakami, H. and G. A. Hegemier, "On Simulating Steel-Concrete
Interaction in Reinforced Concrete, Part 1: Theoretical
Development," Mechanics of Materials, 1985 (to appear).
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Hagemann, L. J., H. Murakami, and G. A. Hegemier, "On Simu-
" lating Steel-Concrete Interaction in Reinforced Concrete, Part
¥ II: Validation Studies," Mechanics of Materials, 1985 (to
§ appear).
"Il
9
' Strain Rate Effects
‘i Read, H. E., "Strain Rate Effects in Concrete: A Review of
) Experimental Methods," S-CUBED Report SSS-R-85-6081, January
;g 1985.
W
f Strain Softening
.
Q» Read, H. E. and G. A. Hegemier, “Strain Softening of Rock,
i& Soil and Concrete -- A Review Article," Mechanics of Mate-
@ rials, Vol. 3, No. 4, 1984,
B —_— -
it Survey Articles
)
¢ Hegemier, G. A. and H. E. Read, "On Deformation and Failure of
! grittle Solids: Some Outstanding Issues," Mechanics of Mate-
o rials, Vol. 4, No. 3, 1985.
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‘ INTRODUCTION

j2$}

}2};, 1.1 OBJECTIVE

HQ; The primary objective of this research program is to initiate
A the construction and validation of an advanced continuum model of
;ﬁ; reinforced concrete that simulates real material behavior in the
gaa highly nonlinear range of material response.

i A secondary objective is to identify experimental and
g theoretical problem areas associated with model development and
;*2 validation, and to recommend remedial research where necessary.

%%g It 1is intended that the continuum constitutive model of
zi: reinforced concrete under development be, when completed:

g:c e  Nonphenomenological

?ﬁ& . Multiaxial

iﬁ;j ° Applicable to both dense and sparse steel layouts.

‘ T e Valid for arbitrary time histories

i

gﬁ It is also intended that the model properly describe:

e

:ﬁ' ° Failure surface geometry

;2&: e Strain hardening, softening

ﬁgg e Stiffness degradation

@h' e  Anisotropy due to steel

. ° Anisotropy due to cracking

é:f e Stress, deformation path dependence

g?‘ e  Strain-rate effects

ﬁﬁ: The term "nonphenomenological" above denotes a model that will
$4 synthesize the global behavior of reinforced concrete from a
;ﬁ“: description of the concrete and steel properties, the concrete-steel
agv interface properties, and the steel geometry. The purpose of such a
4 model is to minimize the number and size of tests necessary to
Eaa evaluate the model parameters, and to allow immediate identification
iﬁ' of the physical significance of each model parameter,.
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The term "multiaxial® above has the wusual connotation:

~‘5’ arbitrary stress (deformation) states and stress (deformation) paths.
;j Both "dense" and "“sparse" steel layouts occur in practice,
W although the former is more common in the defense community.
Q: Consequently, it is important that a model of reinforced concrete be
Eg applicable to a practical range of steel layouts.

Ei The 1loading conditions associated with reinforced concrete

| structures in a defense environment envelop a wide range of strain
'g‘ rates. Of particular importance is the high strain-rate regime.
Q' Consequently, a complete constitutive model of reinforced concrete
fg‘ should incorporate time history or strain-rate effects.

ﬁ The second group of terms noted above refer to the basic
g measures of material response: strength, stiffness, and ductility,
fz and to the changes in these measures due to progressive cracking and
% degradation of the steel-concrete bond, and stress-rate.

;:3 1.2 APPROACH

3,

;ﬁ The task of constructing a viable constitutive model of
3& reinforced concrete can be partitioned into several basic subtasks.

The first such subtask consists of formulating sufficiently accurate
models of the constituents: steel and concrete. The former does
¢ not present a problem; the latter does. Consequently, the first
v, subtask consists of formulating an improved model of plain
. concrete. In what follows, this effort is further partitioned
:;’ into: (1) rate-independent models and (2) rate-dependent models.

The second subtask consists of mathematically describing the
behavior of the steel-concrete interfaces.

o &
o

P

The third subtask consists of formulating a procedure for
analytically mixing the steel and concrete. This must be defined
such that the steel-concrete interaction, which plays a critical
role in the global response of reinforced concete, is adequately
modeled. Further, the mixing procedure must synthesize the global

-

FET

&;f
" |

S} properties of reinforced concrete from the properties of plain
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;&" concrete, steel, interfaces, and the steel geometry. In what
;E:;i follows, this effort is further partitioned into four important
::% problems areas: (1) the steel-concrete bond problem, (2) the
.:5:55 steel-concrete dowel problem, (3) the concrete aggregate interlock
" problem, and (4) the steel-buckling-concrete —spallation problem.
:s‘; Problem (1) plays a dominant role in the bending and nonlinear
',::: stretching (associated with membrane action) of R/C beams, plates
:3':: and shells {(e.g., the "late-time" bending and nonlinear stretching
of R/C protective box-type structure roofs). Problem (2) plays a
75 major role in the transverse shear deformation of R/C beams, and the
r’ transverse and in-plane shear deformation of R/C plates and shells
E,?:i (e.g., the “early-time" response of R/C protective box-type
structure roofs and the protective cover "punch-out" problem).
;.\ Problem (3) plays an important role in those cases wherein relative
‘\ motion occurs across existing cracks {(e.g., hysteretic in-plane
1’, shear deformation of R/C plates). Problem (4), which concerns
i containment of the concrete by the rebar mesh, spallation of the
..::E concrete, and subsequent buckling of rebar, plays an important role
i:iff in direct compression of R/C structural elements (e.g., impact
‘:é loading of a R/C liner in the axial direction).
i) The final task consists of validating the resulting models of
::2' plain and reinforced concrete by experimental versus theoretical
E data comparisons.
:‘_'__ To accomplish the task of modeling plain concrete, the use of
- a plastic-fracturing theory is explored herein. This formulation
;‘ allows simulation of both progressive fracture and “plastic" slip,
¥ and it includes elasto-fracture coupling (i.e., stiffness

: degradation). A major advantage of this approach is that the
-~ constitutive relation is linear in the stress and strain increments.

|.~.
.l

al To accomplish the task of analytically mixing the steel and
.y . . 3

;::s: concrete, a mixture-theory-with-microstructure approach is explored
) .

DL herein. This procedure has been previously used with considerable
K success to model fibrous composite materials. The technique, which
‘é . .

»\’;;. must be expanded to cover problems peculiar to reinforced concrete,
i
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. allows one to directly synthesize the global composite material
§?= properties from the component properties.

i{

244 1.3  SINGLE VERSUS TWO-PHASE MODELS

53 Both. ‘two-phase' and 'single-phase' mixture models of
§§ reinforced concrete are discussed in this report. The two-phase
%? model retains the identity of the individual constituents (steel and
:sﬂ concrete) while the single-phase theory represents a single, new

composite material in which the steel and concrete are completely
“
:i homogenized.

5\\ The advantage of a two-phase model is increased (over a
gé single-phase modei) simulation capability and accuracy. In
?L addition, the role of each constituent is easily identified. The
s' disadvantage is increased {(over a single-phase model) complexity:
;?2 roughly twice the dependent variatles associated with a single-phase
oy mode].
& The advantage of a single-phase model is its simplicity. This
5“‘ simplicity, however, is obtained at the price of reduced simulation
"& capability and reduced accuracy. Nevertheless, for many practical
‘“$ applications these reductions are not serious. A single-phase model
7;: also has the advantage that it can be readily incorporated into
&? current finite element codes. This is in contrast to the two-phase
?%‘ formulation which requires special numerical treatment.
2 It is noted that development of a two-phase theory has
f% progressed under AFOSR support** while development of a single phase
3% theory has progressed under DNA support.* It is emphasized,
?&' however, that one must derive a two-phase model before a single-
phase model can be constructed. Consequently, there has been
33 considerable overlap in these two programs in the area of two-phase
0
W
a FDNA-O0I-80-C-0181

** AFOSR - F49620-81-C-0033.
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model development. On the other hand, a major difference in these
two programs is the use of an endochronic theory to model plain
concrete in the case of AFOSR and the use of a plastic-fracturing
theory in the case of DNA.

1.4 SCOPE

Although considerable progress toward achievement of the
stated objectives has occured under the current contract, the
complete development and validation of either a single-phase or a
two-phase theory of reinforced concrete is beyond the scope of a
single twelve-month research effort. Indeed, such a task requires a
period of focused and sustained research covering several years.

In order to render the research effort systematic and
manageable, attention was focused during the above mentioned
twelve-month research period on a subset of the tasks outlined in

subsection 1.2. In particular, model development was confined to:
(1) strain-rate independent plain concrete theories and (2) the
steel-concrete bond problem. Data collection and assessment, which
are critical to model validation, and also serves as a precursor to
model development covered, on the other hand, most of the task areas
outlined in subsection 1.2, including strain-rate effects.

A

1.5 PRESENTATION

The report presentation is divided into seven sections.
Sections 2,3 document the relevant experimental data base for plain
concrete and steel-concrete interaction. As was noted previously,
these are items critical to both model construction and validation.
Section 4 reviews previous constitutive models for plain concrete.
Development and validation of an improved model of plain concrete is
presented in Section 5. Section 6 presents the construction and
validation of an improved model of reinforced concrete. This
section also reviews some additional important experimental data
concerning the direct testing of reinforced concrete. Conslusions
and recommendations are furnished in Section 7.
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) 1.6 RELEVANCE

g This research program attempts to fulfill a critical need in
the defense community for more accurate theoretical descriptions of
0 reinforced concrete in the inelastic, nonlinear range of material
response. Such descriptions are essential components of numerical
o simulations of structural response. Simulations are, in turn,
o important elements in system design and evaluation, fragility
studies, and cost trade-off studies for protective facilities.
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SECTION 2
EXPERIMENTAL DATA BASE: PLAIN CONCRETE

2.1 REMARKS

In this section a comprehensive survey is made of the current
data on the behavior of plain concrete. Such information is vital
for model validation purposes. The discussion is partitioned into
uniaxial response (subsection 2.2), biaxial response (subsection
2.3), and triaxial response (subsection 2.4). A substantial portion
of this information is used in the validation of the improved model

of plain concrete presented in Section 5.

2.2 UNIAXIAL RESPONSE

The preponderance of experimental data on plain concrete has
been obtained from uniaxial tests. Much of the data is of little
use for constitutive theory development and verification tasks
because either experimental procedures were not adequately
documented or the generated data base was too small., For example,
many researchers make no mention of testing speeds or specimen end
conditions while much of the data is little more than a list of
observed compressive strengths.

For experimental data to be useful in constitutive theory
research the data must be the result of a carefully executed suite
of experiments. Care is needed because of the large number of
variables involved, Table 2-1. Additionally, concrete response is
extremely complicated. Typical wuniaxial compressive monotonic
response is shown in Figure 2-1. Concrete has little strength in
tension. In compression the response is initially elastic and then
becomes progressively nonlinear as internal microcracks propagate.
At a maximum compressive stress, f&, concrete can start softening
and the stress continuously decrease until, at some ultimate strain
€Lt complete specimen disintegration occurs. Typical cyclic
stress-strain curves are shown in Figure 2-2., Little hysteresis
occurs so long as the stress has never reached fé. On the
softening branch, Figure 2-2b, hysteresis appears more pronounced
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and possibly variable. Currently no well designed and executed
series of experiments has been executed on a set of identical
specimens over the entire uniaxial response spectrum.

Table 2-1
Experimental variables in concrete uniaxial testing
Testing Machine and Pro- Machine Stiffness
cedure Strain versus Load Control

Testing Speed
Servo Controls
Feedback Signal

Specimen Size and Shape
Aggregate Type and Content
Aggregate Size Distribution
Water/Cement Ratio
Curing/Storage History

Machine/Specimen Inter- Load Platen Stiffness

face Interfacial Friction

In the following subsections, equipment and experimental
procedures are first reviewed. The objectives here are (1) identify
problem areas in concrete uniaxial testing, (2) recommend techniques
that will produce reliable stress-strain data, and (3) suggest why
there is so much scatter in the reported data. Subsequently the
experimental data bases for concrete uniaxial monotonic and cyclic,
compression and tension reponse are reviewed.

2.2.1 Testing Machine Considerations

It has been very difficult for experimentalists to design
testing machines that load (or deform) concrete test specimens to
desired stress (or strain) time histories. The principal problems
have been

° inadequate testing machine stiffness

) unintentional constraining of specimen deforma-
tions.

A. Testing Machine Stiffness.

Figure 2-1 shows that under displacement controlled condi-
tions, concrete exnhibits a long softening branch., This branch
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Figure 2-1. Typical uniaxial monotonic response
of concrete.
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Figure 2-2. Typical uniaxial compressive cyclic response of concrete
(a) pre-peak response (b) post-peak response.
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i implies that concrete does not necessarily fail catastrophically
ﬁ when the stress reaches fé. Indeed current ACI guidelines for
w}, structural design account for concrete softening. Also most of the
%@ energy dissipation and material damping in concrete occurs on the
c.;iis softening branch. However, reliable data on concrete softening is
% [ difficult to obtain because sudden, even -explosive, specimen
,.: failures frequently occur when the stress reaches f;:' Figure 2-3
"4{3‘ shows data obtained by Nhitney(l) on three different concretes.
o The results indicated that uncontrolled specimen failure occurred
’:':;2:. when the magnitude of stiffness associated with the concrete
;E:E:S: specimen softening branch just exceeded testing machine stiffness.
:g,:!, Whitney suggested that such failures occurred because the testing
1’3 machine was not stiff enough to absorb the energy released as the
\I specimen softened. Hudson, Crouch and Fairhurst,(z) using virtual
,"’"3 work and stability arguments later repeated by Ahmad and Shah,(3)
;- gave a mathematical justification for this reasoning. Experimental
‘ , verification was obtained by Sigva]dason(4) who used two testing
“3\ machines with stiffnesses of 0.1 x 107 1b/in and 2.0 x 107 1b/in
}:w to test identical specimens. Specimens in the softer machine failed
f“f. explosively while those in the stiffer machine did not. Sigvaldason
J also noted that the failure stress was insensitive to machine
,;E:E?.:: stiffness.
Ei: | Several researchers have sought to prevent uncontrolled
ety specimen failures by artifically stiffening their test machines.
e Hsu, Slate, Sturman and winter (%) placed aluminum channels in
i parallel with their specimen so that they were simultaneously loaded
; along with the specimen. However the channels had too small a
,.:u : cross-section and the authors achieved only limited success. Ahmad
35:; o~ and Shah(3) placed a case hardened steel cylinder around but not
; in contact with their specimens. The cylinders responded
':3".' elastically up to an axial strain of 0.006 and were of sufficient
:fs.: wall thickness that the composite steel-concrete stiffness was not
w sufficiently negative as to cause uncontrolled failure. Hughes and
ﬂ.:': Chapman(6) effectively increased the stiffness of their universal
Qi:‘:{: testing machine when they were performing tensile tests by
f.".:s‘;:
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simultaneously compressing a steel block placed in the compression
compartment of the machine. From their experiments the authors
showed that concrete can soften in tension.

Concrete post-peak response can also be controlled if
closed-loop servo-controlled systems are used to apply the 1load.
Hudson, Crouch and Fairhurst(z) discussed such systems at length.
In a closed-loop servo-controlled concrete testing system the
feedback signal (a preselected varying deformation measure that is
characteristic of the experiment) is continuously monitored and its
value compared with that programmed into the system. If significant
error is detected, the control system automatically adjgsts load
cell pressure so as to minimize the error. For maximum
effectiveness system response time must be sufficiently fast and the
feedback signal judiciously selected. For rock testing, a response
time of 5 msec is adequate since then failure propagation will be
slow; this is well within the capability of many systems and should
hold for concrete also since the failure processes of the two
materials are similar. The optimum feedback signal is that
deformation measured which 1is most sensitive to the ongoing
failure. In a compression test, where failure results from cracks
parallel to the load, transverse displacement is the best choice
while in a tension test tensile strains or displacements are best.

In summary, the steps necessary to construct an adequate
testing machine and properly control it are known. However few such
testing systems exist.

B. Specimen Constraint Reduction

In uniaxial tension and compression tests, load is transferred
from load cell to specimen through steel load platens that are very
stiff relative to the concrete. Particularly in compression tests
interfacial friction between platen and specimen allows the steel to
inhibit free transverse motion of the concrete and retard internal
microcrack formation 1in the concrete parallel to the load.
Corsequently the specimen 1is artificially strengthened. This
phenomenon is particularly noticeable in cubes where no point in the
specimen is far from the load platens (RUsch(7)).
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The lateral constraint would not be objectionable if it were
not so uncontrollable. However, as is shown in subsequent sections,
frictional effects cause wide variations 1in observed failure
stress. Thus platen-specimen friction should be minimized. A
variety of materials have been interposed between platen and speci-
men to achieve this. Jones(s) even tried plywood and rubber.
Plywood had negligible effect but rubber induced premature failure
because the rubber expanded laterally more than the concrete and
induced lateral tension in the concrete. The usual technique for
reducing friction, (Hsu et al.(S), Hughes and Bahramian(g)), is
to alternate layers of waxed paper, plastic, teflon or metallic
foils with grease.

The latter authors, in comparing lubricated versus
unlubricated interfaces noted that lubrication

] reduced differences in concrete strengths
obtained from specimens of different shape

) resulted in compression specimens failing from

longitudinal splitting, which was indicative of
unconstrained deformation,

2.2.2 Specimen Considerations

The most serious source of scatter in concrete stress-strain
data is the specimen itself. The large number of variables that
describe a specimen are of two types -- concrete mix parameters and
the rest. Sensitivity of experiemental data to mix parameters will
not be discussed since these, in essence, define a concrete's
microstructure and thus fall outside the purview of continuum
mechanics based constitutive theories. The remaining variables are
specimen size, shape and curing history.

In uniaxial tests, specimens range from two inch cubes to 6
in. D x 12 in, L cylinders and larger. Concrete is subject to a
certain randomness in its macroscopic stress-strain response because
its behavior is governed by the initiation, propagation and final
coalescence of internal microcracks. Thus specimen strength
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decreases with increasing specimen volume since, from statistics,
larger specimens will have a larger expected initial microcrack
size. For example, Sigva]dason(4) found that 4 1in. cubes were 10
percent stronger than 6 in. cubes. Newman and Sigvaldason(lo) have
noted a subtle way that large specimens can effect experimental
results. An inhomogeneous distribution of aggregate and the
accumulation of voids beneath pieces of aggregate close to the top,
horizontal, free surface of the specimen, can result in a nonuniform
specimen strength. This was verified by Co]e(ll) who tested the
upper and lower halves of a 4 x 4 x 8 in. prism and found the upper
half to be weaker by as much as 56 percent relative to the lower
half. Consequently constitutive data obtained from test specimens
will be most representative of in situ plain concrete when the test
specimens are large; small specimens will tend to overestimate

strength, Sabnis and Aron1(12), Newman(13).

Three specimen shapes have been commonly used:
. Cubes

° Rectangular prisms

° Cylinders.

The most important specimen shape parameter is the specimen
longitudinal-to-transverse dimension ratio L/T. Extensive
experiments indicate that results are insensitive to L/T when L/T is
greater than two; this is reflected in the dimensions of the common
6 in. D x 12 in. L cylinder specimen. (Newman and Lachance(14)

recommended taking L/T > 2.5).

Thus the cube specimen is least desirable because it is overly
sensitive to platen induced end constraints. For example Newman and

Lachance(14)

found cube compressive strength to be 30 percent
greater than that of cylinders with L/T = 2.5, Sigva]dason(a)
found 4 in. cubes were 20 percent stronger than cylinders with L/T =
2; Hughes and Bahramian 9), using unlubricated platens found 4 in.
cubes were up to 50 percent stronger than rectangular prisms with

L/T = 2.5
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Tne effects of specimen size and shape are particularly
noticeable in the determination of the compressive softening
branch. Figure 2-4 shows results for a series of tests on marble
specimens and it is clear that for short specimens, where L/D < 0.5,
almost no softening is observed because of platen constraints. When
L/T > 2 response curves are fairly close together. When specimen
dimensions were scaled keeping L/T fixed, changes 1in specimen
response were not as dramatic, indicating that L/T is more important
than absolute dimensions. Of course large specimens are more
difficult to control on the softening branch because they release
more energy than smaller specimens. Thus larger specimens will tend
to failure more rapidly.

The final way that specimens can effect experimental results
is through their curing history. Curing effects are complicated and
are connected with the diffusion of moisture through the concrete
microstructure. Large specimens cure slower and more non-uniformly
than small specimens thus setting up moisture gradients which would
make large specimens more prone to curing induced microcracking.
Mirza, Hatzinikolas and MacGregor(ls) and Sabnis and Aron1(12)
noted that specimens cored from massive structures such as dams are
not size sensitive when tested. This is because while the specimens
were curing in situ they did not have large surface areas over which
to lose moisture. Thus for the current application, where the
structures are very large, it is best to make specimens by coring
them from larger specimens. An alternative would be to seal the
specimens against moisture loss/gain. This latter suggestion is
motivated by the work of Sabnis and Aroni who found that sealed
specimens also showed reduced sensitivity to size when tested.

Conclusions

The objectives of the discussion on specimen variables were to
identify reasons why there is so much scatter in the current data
base and to suggest how best to design a specimen that would be most
useful in protective structure modeling. The reasons for the data
scatter are clear:
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. . wide differences in mix (not discussed)
a&:.‘;:; o large number of different specimen sizes and
!‘:::: shapes
el
;&o: [ non-uniformity in specimen curing history.
..: ‘ To overcome these problems it is recommended that:

3
D)
.' ° in modeling a particular structure, the
3&5‘5 constitutive parameters be for the concrete mix
j;g;h-;i used to fabricate the structure,
et . specimens should satisfy L/T > 2 but not be so
;u; large as to prevent controlled descent of the
s]‘,sg:.. softening branch,
"I“‘“,
!';:;':: . specimens should ideally be cored from the
:*'-'f structure being analyzed or else cured in an
}*‘: environment that simulates in situ curing.
5

U
E‘::; , 2.2.3 Concrete Stress and Strain Rate Sensitivity

(To
?:E}S: Discussion of concrete rate sensitivity can be divided into
B two parts depending on whether testing lasts long enough for
W significant concrete creep to occur. Typical uniaxial tests last
PN only minutes and for longer tests, specimen creep or relaxation is
4_& possible while for shorter test time, concrete will exhibit a
’-)’ viscoplastic (i.e., rate enhanced strength) effect. Concrete
‘;:;:g.- strength increases monotonically with increasing strain rate,.
:;:::: Standard tests are performed at a rate of 10"1 in/fin/sec (or 35
AN N P
f,‘f,! psi/sec). Mirza, Hatzinikolas and MacGregor,(ls) using a modified
e
ik form of an earlier result by jones and Richart,(ls) stated that
?:,. represented the stress rate sensitivity of concrete strength. Here
— fC35’ fCR were concrete strengths at stress rates 35 psi/sec and
;}:2 R psifsec respectively. Eq. 2-1 was valid over the range 10'1 < R
W . 4 .
:'". psi/sec < 10 and predicted that fcl and fclOOO were 12
::t\'l : percent lower and higher than f.,.. (For R = 1, 35, 1000 psi/sec,
-_— fC35 = 4200 and initial Young's modulus E = 3.6 x 10° psi, the
1Y -
;::::‘: corresponding strain rates and test durations are ¢ = 2.8 x 10 7,
R 107%, 2.7 x 10°% in/in/sec and 7, 0.2, 0.07 min respectively.)
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4 More recently Kap]an(17) tested a 20 N/mm2 (2900 psi)
b concrete at stress rates 10'3 - 10 N/mmzlsec (0.145 - 1450
i psi/sec). Results for a 36-day concrete are shown in Figure 2-5.
L The data was found to fit the equation

; fCR = 0.84 fc35(1 +0.124 1ogloR) (2-2)
y

0

y which is similar to Eq. 2-1.

! High stress rate data have been obtained by Ferr1to(18)

A\ Natsteln(lg), Atchley and Furr(zo) and Hughes and watson(ZI).

3 Figure 2—% shows data frgm the first paper. Stress rate range was
{ 1.8 x 10° - 1.8 x 10" psi/sec which, for an initial Young's
é Modulus of 3.6 x 106 psi, corresponded to a strain rate range of 5
a X 10'4 - 5 x 10'1/sec. Thus load rates were much more severe
i than in previously discussed papers. Indeed for the highest rate
Ferrito found that strength was 30 percent greater than for the

static loading case. Note that initial VYoung's modulus also

i‘ increased (by 18 percent over static test value). Natstein(lg)
; obtained comparable results, Figure 2-7. He tested concretes with
* static strengths of 2800 psi and 6300 psi respectively and thus
) straddled Ferrito's 4000 psi static strength concrete. Watstein
B found concrete to be very rate sensitive with strength increases for
Q the weaker (stronger) concrete of 55 percent (19 percent) over the
Y strain rate range 5 «x 1074 - 5 x 10'1/sec. Thus concrete

strength under dynamic load increased more for the weaker concrete,
a trend consistent with Ferrito's data.

) Figure 2-7 also shows the data obtained by Atchley and
2 Furr.(zo) Their principal differences with Watstein are that they
i found weak concrete to be less strain rate sensitive than strong

concrete and more importantly the rate of strength increase de-
2 creased with strain rate. However, over most of the explored strain
rate range Watstein and Atcheley and Furr are in reasonable
ot agreement.
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Figure 2-6. Sensitivity of concrete compressive stress-
strain curves to stress rate.
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The preceding authors concentrated on determining strength
strain-rate sensitivity. Nelissen,(zz) Figure 2-8, obtained data
on both strength and softening branch rate sensitivity. Constant
strain and stress rate experiments were performed in pairs with
stress rate chosen to equal that initially induced by the constant

strain-rate experiment.

The stress controlled experiments achieved the higher failure
stress and ended in abrupt specimen failure. The strain controlled
experiments allowed stress to relax once the maximum stress was
achieved so that softening was observed. The data showed a 20
percent strength increase occurred between the slower and faster
stress controlled experiments compared to a 18.7 percent increase
predicted by Eq. 2-1. So Nelissen's results are consistent with
those previously discussed.

The softening branches obtained by Nelissen were at constant
strain rates of 1.7 «x 10'7/sec and 3.3 x 10'5/sec. At a strain
of approximately 0.0035 the two curves met. Rﬁsch(23) in his
softening experiments, Figure 2-9, covered the strain rate range
10;10/sec to 1.7 «x 10’5/sec and observed that stress-strain
curves crossed at ¢ = 0.003 with the faster loaded specimens showing
faster softening.

In terms of initial stress rate, the Figure 2-9 curves
correspond to 6.2 x 10', 1, 4 x 10'2 and 2 x 107 psifsec. Thus
the experiments were slow, taking from two minutes to two years.
Strength asymptotically approached a limit for test times greater
than 2 days.

It is reasonable to assume that in all but the fastest of
Rusch's experiments creep and/or stress relaxation was continuously
occurring. In concrete, creep need not be deleterious to structural
integrity, Concrete  behavior is governed by progressive
microcracking. If microcracking occurs at a sufficiently slow rate
then mortar creep will tend to close cracks, redistribute stress
concentrations around cracks and generally retard crack growth.
Therefore, as test time shortens, creep will be of lessening
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compression experiments.
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importance, cracks will not "heal," ultimate failure will occur at
lower strains, and the softening branch will be steeper.

o o -

g Experimental observation of this phenomena, while suggested by
4 very slow rate tests, would be difficult to observe at higher rates
N because of equipment shortcomings. As strain rate increases, a

aCTE

specimen sheds load faster on the softening branch and thus has an
increasing energy release rate. This energy is absorbed by the test
equipment but because of inertia in testing machine and
servo-controls, the system would find it increasingly difficult to
accommodate the energy as the energy release rate grew until finally
specimen unloading would become unstable. Figure 2-10 shows exactly

Pk
e

this type of behavior. Cylinders were tested at two strain rates,
32 «x 10'6/sec and 10‘2/sec. A stable softening branch was
observed for the lower strain rate while for the higher rate

SRS P o e

S unioading was unstable. From the data it is unclear whether the
behavior is the result of a machine inadequacy or actual material
response.

M Conclusions

it Conclusions are divided into two categories; those pertaining
to testing and those pertaining to structural analysis and
N constitutive theories.

4

33 Testing. The preceeding discussion showed that concrete is
{ rate sensitive over its entire response spectrum. Thus data to be
used in a structural analysis problem should be obtained over a
strain rate range characteristic of the problem, Additionally in
all concrete tests load rate or strain rate should be reported. If

l‘ 2 v.‘-“.‘

strain softening data is required then testing should be performed

'.

at several constant strain rates in a stiff, servo-controlled
testing machine and, depending on equipment limitations, there will
he a specimen-size/strain-rate envelope beyond which the testing
machine will be unable to control softening.

I et ot b .

Structural Analysis. For structural analyses to accurately

simulate concrete response one must model
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) strength strain rate sensitivity
) softening branch strain rate sensitivity.

No static structural analysis problem is completely time independent
because loads are always applied over a finite time period. The
loads and their application time will translate into some average
strain rate and concrete is rate sensitive at all load rates. Thus

to perform a conservative static amalysis the selected, fé should
be representative of the strain rates experienced during the loading.

For dynamic structural analyses strain rate effects can
enhance concrete strength 50 percent or more beyond that attained in
a static test. Thus a comprehensive analysis requires a strain-rate
dependent strength model, e.g., viscoplasticity, where both Young's
Modulus and the yield strength are rate sensitive. A conservative
approach, i.e., one that would underpredict strength, would be to
neglect rate effects and use data corresponding to a low strain rate
test.

The most important conclusion concerns the softening branch.
In Figure 2-9 the slope of the softening branch was shown to be very
rate sensitive, even at rates corresponding to static analyses,
because of creep. Physically, softening represents the gradual
performance degradation that concrete can experience and implies
that under suitable constraints concrete will experience controlled,
progressive shedding of load from a failed region into its
surroundings, i.e., failure need not be sudden and catastrophic.
Modeling of softening in finite element codes would be advantageous
since it would provide a physically based mechanism for qradual
failure and would obviate the need for the usual artifices employed
by modelers to simulate failure. If softening were not modeled then
a rational approach to failure would be to reduce stress over a
series of loads increments so as not to propagate a spurious failure
through suddenly overloading neighboring regions. What are totally
incorrect and unconservative are those models that maintain stresses
at their failure level once that level is reached.
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For dynamic analyses it appears that concrete may not soften

:J" under intense loading. Thus in impact analyses the impact zone
:a would spall and crush rather than soften and it would only be
::; farther away from the impact zone that softening would occur. In
" problems where the entire structure was impulsively loaded,
;;: softening would not need to be considered; concrete would just reach
;2‘ the failure stress and crush.
? 2.2.4 Monotonic Response in Compression
:: Figure 2-11 is a schematic of a typical uniaxial compressive
’ft stress-strain curve for a 'two-minute concrete test. Initially the
’E response is linear elastic with tangent modulus of 2 - 4 x 106 psi
;,' and Poisson's Ratio v = 0.2. At 0.3 - 0.4 f. (fl being the
K uniaxial compressive strength) anelastic response starts and
irreversible strains begin to accumulate. With a further stress
' increase the material strain hardens and the stress-strain curve
) starts to flatten until at the maximum stress f(': the curve is
R horizontal. For typical concretes f' is in the range 2 - 10 ksi
% and the corresponding strain €c is 0. 002 - 0.004.
7'3 Any attempt to load concrete beyond f(': results in explosive

failure. However, in a strain controlled experiment the stress
N decreases as the strain increases beyond e, and the material
x softens. The softening or descending branch at first steepens and
z, then flattens out. At some final strain ¢ ., uncontrolled
3 deformation occurs and failure ensues. Strain €ult is extremely
; sensitive to test and specimen conditions but for well controlled
s experiments is in the range 0.008 - 0.02. Figure 2-12 shows
; stress-strain curves for typical concretes and indicates that high
" strength concretes have a steeper softening branch and fail at a
Tower final strain.  Stronger concretes are in a sense more brittle
: because softening is controlled by creep mechanisms and strong
concretes creep less readily than weak concretes.
Figure 2-13 is a schematic of the stress versus volumetric
strain curve that results duri» < the ascending part of the Figure
E. 2-11 history. The curve is linear up to about 0.6 f. at which
R
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stress the rate of volume contraction decreases. At the critical

stress between 0.7 - 0.9 fE the curve is vertical and

o ]
dilatatioﬁsor volume expansion commences. For many concretes when
the stress reaches f& sufficient dilatation has occured that the
volume is greater than at the beginning of the experiment. At the
critical stress the instantaneous Poisson’s Ratio equals one half
and increases as dilatation increases. Figure 2-14 shows two

typical sets of data for volumetric strains.

Rﬁsch(23) showed, Figure 2-15, that the critical stress
corresponded to the concrete sustained 1load strength. Rusch

preloaded specimens of the same concrete in compression and then
recorded strain-time histories. In Figure 2-15 each curve is for a

fixed elapsed time and gives accumulated strain in that time for a
given stress. Stresses are normalized to the concrete strength
determined from the usual two minute compression test. Rusch found
that concrete would support indefinitely any stress below s
while for stresses above the critical value failure always occurred
given enough time. Thus L represents the onset of an unstable
progressive fracturing process which culminates in failure. For o <
L concrete would «creep and internal stresses would be
redistributed until a final equilibrium configuration was achieved.
From Figure 2-15 it can be concluded that for deformations lasting
less than two minutes creep effects will be negligible and since, in
this report, none of the extreme 1load environments involves
extensive periods of time, creep phenomena are not explicitly

considered.
Conclusions

(] Concrete uniaxial monotonic compressive
response is totally different from metals.

. The stress o.g at which dilatation starts is
the sustained load strength.  Stress o.g
signals the onset of an internal instability
which ultimately results in failure.

) If at the end of any structural analysis
residual stresses are greater than 0.7 fg,
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Figure 2-13. Volumetric strain €, for uniaxial,
monotonic, compression test.
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then the structure must be assumed unstable
. and, if enough of the structure is highly
stressed, in damage of collapse.

4
§ o Creep effects are unimportant for short time
:f phenomena. :
9 2.2.5 Cyclic Response in Compression
§ Protective structures may, under certain loading conditions,
$ be subjected to several Tloading-unloading-reloading cycles.
? Consequently, in this subsection a critical evaluation is given of
ﬁ the current understanding of concrete uniaxial cyclic response.
W
if Shah and Chandra(27) performed a fatigue study on plain
3 concrete. Samples were cycled in uniaxial compression in the ranges
{ 0.1 f to a f. where a equalled 0.6, 0.7, 0.8 and 0.9. In order
t: of decreasing cycle size the authors found the number of cycles to
failure was 17, 82, 1000+, 1000 +. Thus within the framework of
3 practical finite element analyses the possibility of a fatigue
failure can be discarded since it is impractical to track stresses
if around more than a few loading-reloading cycles.
k The pioneering work on compressive cyclic Jloading was
? performed by Sinha, Gerstie and Tulin(zs) and typical results are
, shown in Figure 2-16.
[}
K, The figure indicates that considerable creep was occurring at
' cycle peaks i.e., at the start of unloading strain continued to
s increase giving the cycles a rounded appearance. If there had been
. no significant creep or relaxation, the start of unloading would
‘$ have made a sharp corner as the strain instantaneously changed from
% increasing to decreasing. The authors noted that spontaneous (i.e.,
uncontrolled) unloading and specimen cracking occurred at points of
. vertical tangency on the cycles. Two important finds were \
¢ ) average stiffness over a cycle decreased as J
- cycles accumulated. :
,

|- -
®

The envelope curve traced out by cycle peaks
. corresponded well with the monotonic stress
strain curve.
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Cycle-sensitive stiffness degradation implies that concrete
exhibits elastic-plastic coupling i.e., the instantaneous elastic
unload-reload modulus changes as the plastic strain increases.
Coincidence of envelope and monotonic loading curves is an
indication that the failure surface in multiaxial stress space might
be unique and not sensitive to stress-strain history. Finally
Figure 2-16 shows that concrete can exhibit considerable material
hysteresis.

The findings of Sinha, Gerstle and Tulin have been
qualitatively verfied by Karsan and Jirsa(zg) and more recently by
Cook and Chindaprasirt.(30) Figure 2-17, from the latter authors,
shows that maximum stresses under cyclic load do indeed follow the
monotonic loading curve. Note that the authors achieved a sharp
unloading and that for cyclic loading along the softening branch the

unload-reload behavior is nonlinear.
Discussion
Under uniaxial compressive cyclic loading concrete is
(] hysteretic
) stiffness-degrading
0 nonlinear in its unload-reload behavior.

Uniaxial mathematical models, based on the above data, have
been developed and do exhibit these features. However, the theories
have not been implemented in the analysis of protective facility
structural response. Thus, currently, no definitive conclusions can
be drawn regarding the importance of including cyclic stress-strain
effects in stress analyses. In typical structural analyses concrete
is assumed to be

(] nonhysteretic
) nonstiffness degrading

° linear in its unload-reload response.
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The first assumption is conservative since it omits an energy
dissipation mechanism and thus would lead to an overestimate of
structural deflections and damage. The second assumption s
unconservative since it results in models whose stiffness is never

degraded. As a consequence predicted deflections are less than
those that would be obtained if stiffness degradation was included.

The most important shortcoming of the data on which the above
remarks are based is the strain rate at which the experiments were
performed. Cycle times were on the order of minutes while the
natural frequencies of concrete structures are approximately 1 - 10
Hz. Thus what is needed are cyclic tests which are an order of
magnitude faster than those discussed here. Since concrete is
strain rate sensitive, results from these tests might differ
significantly from those presented here.

2.2.6 Tensile Response

The least explored region of concrete uniaxial stress-strain
response is 1its behavior in tension. In structural design it is
usual to assume that concrete has no tensile strength and that all
tensile loads are carried by reinforcing steel. However, for large
structures, such as protected facilities, damage will at first be
localized and then subsequently propagate. Damage propagation will
be in the form of cracking and tensile cracking will require a
continuum understanding of concrete tensile response.

An accurate understanding of concrete tensile response can
only come from the performance of carefully controlled and
instrumented experiments. Thus the cylinder splitting or Brasilian
test is not an appropriate test because an inhomogeneous stress
state is induced in the specimen., Similar remarks hold for beam
type tests. Acceptable data come only from specimens loaded in
testing machines such that a gage section of the specimen is in a
homogeneous state of stress and strain. The most comprehensive
experimental study of this type was performed by Hughes and Chap-
man(G) whose results are shown 1in Figure 2-18. The testing

machine was discussed in subsection 2.2.1 and the tests were
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. performed at a constant strain rate of 6.7 x 10 “/sec. The figure
gh shows that concrete is extremely weak in tension. For most
1) concretes, uniaxial tensile strength f% is in the range of 200 -
gj 800 psi or 8 - 10 percent of f' Strains at maximum stress are 5
' x 107 -5 2 x 107 4 Surpr1s1ng1y if concrete is sufficiently
?f well constrained it will strain soften and, depending on the
9

2 concrete, sustain loads until strains reach 0.0002.

Ll'»

' Parallel to its compressive behavior, concrete has a sustained
. load strength in tension. Al-Kubaisy and Young(31) and
4
4 Domone£32) have shown that concrete will support loads less than
;‘ 0.6 - 0.8 f{ indefinitely but will finally fail under higher
;L loads. Failure results from microcracking induced creep. Figure
‘; 2-19 shows isochronous tension stress-strain curves for a typical
;: concrete. The curves are similar to those obtained by Rusch for
- compressive respanse.

)

2 Discussion

al The above data only describe the monotonic tensile response of
:; c.ncrete at essentially a single strain rate. Nothing is known
N about either the strain rate sensitivity or the cyclic behavior of
concrete in tension. Although concrete has 1little capacity for

- supporting tensile loads, its tensile behavior cannot be ignored.
:: Tensile failure and how concrete redistributes load after reaching
53 the failure stress will control how fast cracks propagate and how
:' fast a structure's load carrying capacity is destroyed. From the
iﬁ discussion on compressive behavior it is probable that concrete
b tensile response is strain rate sensitive and that strength is
fz enhanced and softening branch steepened as strain rate increases.
‘ Current data are for very low strain rates and so no data exist on
§ which to base constitutive models for dynamic structural analyses.
:ﬁ Under strain control concrete in tension would probably exhibit
{‘ cyclic behavior similar to that shown in Figure 2-17 for
39 compression. This possibility has not been explored and its
*t importance cannot be assessed.
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2.3 BIAXIAL RESPONSE
2.3.1 Remarks

Biaxial loading corresponds locally to a state of plane stress
wherein only two principal stresses are non-zero. The biaxial
stress state is called biaxial tension, biaxial compression or
compression-tension accordingly as the principal stresses are both
positive, both negative or of different signs, respectively.

Most biaxial experiments are performed on plate-like specimens
where one dimension, the thickness, is much less than the other
two. The specimen is loaded around the edges by forces in its
plane. For biaxial tension failure is similar to uniaxial tension
and occurs from a single thru-thickness crack perpendicular to the
direction of the maximum principal stress. For biaxial compression
failure occurs from a single crack in the mid-surface of the plate;
the crack does not meet the free unloaded surfaces of the plate.
Finally, for the case of compression-tension, the failure mode is a
mixture of the two previous modes depending on the relative
magnitudes of the compessive and tensile loads.

Slate and his co—workers(33'35) believe that under biaxial
compression failure is governed by tensile strain in the plate
thru-thickness direction while Kupfer, Hilsdorf and Rﬁsch(36)
believe that the biaxial failure modes imply that any realistic
failure criterion must depend upon all three principal stresses and
not just the two extreme stresses.

Multiaxial experiments on plain concrete were first performed
around the beginning of the century but it has only been in the last
thirty years that generally accepted data has been published. Many
different shapes and sizes of specimens and many different testing
machines have been used to obtain biaxial stress-strain data. The
objectives of all tests have been to subject specimens to known
homogeneous, stress histories and to then record failure 1loads
and/or strain histories. However, occasionally, difficulties
associated with experimental procedures and the complexity of plain
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concrete response have resulted in researchers unknownlingly not
achieving their objectives. In the following 1is presented a
discussion of specimen types, and testing machines and their affect
on experimental results. Subsequently, data from biaxial
experiments are presented.

2.3.2 Biaxial Test Specimens

One reason for the great difference in experimental results
obtained by different researchers 1is the wide variety of test
specimens used; this can be seen in Table 2-2. Biaxial test
specimens fall into three main categories

° plates
° cubes
. hollow cylinders.

"Plate specimens are by far the most popular because they are
easy to fabricate and minimize frictional constraints between the
specimen edges and the load platens. (Frictional effects reduction
through platen design will be discussed in more detail in subsection
2.3.3.) Weigler and Becker(41’42) tested a series of prisms whose
dimensions varied from 10 x 10 x 10 cm to 10 x 10 x 2 cm in uniaxial
and biaxial compression (o1 = 02) and found that specimen
strength decreased with size because of reduced platen constraint,
Figure 2-20. Similar findings have been reported by
Fumagelli.(so) Iyengar, Chandrashekhara and Krishnaswamy(44) in
their biaxial compression experiments used cubical specimens and,
because of friction over the 1large contact area between the
specimens and load platens obtained biaxial compression strengths

three to four times what is now considered correct.

Hollow cylinders have been used in compression-tension and
compression-torsion experiments. However, the specimens are diffi-
cult to fabricate with uniform wall thickness. Also, it is impos-
sible to obtain a homogeneous stress field in the specimen. This is
because cylinder wall thickness must be at least three times the
maximum aggregate dimension to obtain a reasonably homogeneous
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Table 2-2

Specimen types used in biaxial tests

Specimen Aggregate

Authors Ref  Type Dimensions (max)
Atan and Slate (37) Plate 5x 5x0.5 in. 0.75 in.
Kotsovos and Newman (38) " 10x10x4 in. 0.5 in.
Kupfer, Hilsdorf + Rusch (36) . 20x20x5 cm 1.5 «cm
Liu, Nilson + Slate (35) " 5x 5x0.5 in. Model aggregate
Robinson (39) " 10x10x4 in. 0.187 in.
Vile (40) " 10x10x4 in. 0.75 in.
Weigler + Becker (41,42) " 10x10x2.5 cm 0.7 cm
Andanaes, Gerstle + Ko (43) Cube 4 in. _——
Bertacchi, Berlotti +
Rocci (38) " 10 cm 1.25 cm
Iyengar, Chandrashekhara
+ Krishnaswamy (44) " 4 in. , 6 1in. 0.375 to 0.75 in.
Linse (38) " 10 cm 1.25 cm
Schickert (38) " 10 com 1.25 cm
Taylor (38) " 2 in. 0.5 in,
Traina + Zimmerman (38) " 3 in. 0.5 in.
Bresler + Pister (45,46) Cylindeb?)  9x1.5%30 in. 0.5 in.
Goode + Helmy (47) " 8xl x26 in. 0.375 in.
Isenberg (48) " 6.4x.84x10.2 cm 0.47 cm
Rosenthal + Glucklich (49) " 30.5x2.75x35 cm 1.25 cm

(a) Dimensions are outside diameter, wall thickness and gage length respectively.
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specimen. Yet when wall thickness is greater than ten percent of
the cylinder radius the stress state becomes significantly inhomo-
geneous thus making it impossible to accurately define stresses and
strains in the specimen.

In summary the preferred biaxial test specimen is one which,
in conjunction with its test machine, minimizes frictional effects
and stress-strain inhomogeneities.

2.3.3 Biaxial Testing Machine Considerations

The objectives of all biaxial experiments to date have been to
obtain data on concrete monotonic strength and stress-strain
relationships. No data has been published on either cyclic response
or post-peak softening behavior. Therefore, testing machine

stiffness is not of primary concern. Rather, for cube and plate
specimens attention has focused on transferring load to the specimen
with a minimum of friction between the load platens and the specimen
since friction induces lateral constraint on the specimen resulting
in artificially high levels of concrete strength.

For cubes and plate-like specimens there are three major load
platen designs:

() steel plate
0 brush bearing
) fluid-cushion,

The steel plate platen is a steel plate thick enough not to be
distorted during a test. When no lubricants are used between steel
and concrete, high levels of friction are present. Friction has two
effects on experimental results. First, it inhibits free lateral
expansion and contraction in the plane of the platen face thus
artificially stiffening the specimen. Secondly, in biaxial com-
pression loads applied through platens in one direction are
partially transferred to, and hence supported by, the load platens
orthogonal to them. The combination of these effects can lead to
totally erroneous results as can be seen in Figure 2-21. In Figure
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Figure 2-20. Uniaxial and biaxial compressive
strengths versus prism thickness,
d - W = uniaxial strength for d
= 100 mm.

e

Figure 2-21. Comparison of failure surfaces for biaxial
compression.
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2-21 data obtained by Iyengar, Chandrashekhara and Krishna-
swamy(44) using unlubricated steel plate platens are compared with
data from Kupfer, Hilsdorf and RUsch(36) who used the brush
bearing platens described below. Friction can be reduced by
interposing layers of material between the load platens and the
specimen. Table 2-3 taken from Nelissen(sl) shows how different
levels of lateral constraint can be obtained and that it is possible
to practically eliminate friction. Thus acceptable plate platen

arrangements can be designed for compression testing; however, the

;f'&‘ designs cannot be modified to transmit tension to a specimen.
Y Table 2-3
LN Coefficients of friction between 1oad platens and
sfg specimens for various lubricants
o (Source: Nelissen(51))
[
ikvl Coefficient
N Lubricant of Friction
RO
None 0.46 - 0.65
Graphite powder 0.28 - 0.31
Grease 0.15 - 0.24
0.05 mm teflon film and
! silicon grease 0.018 - 0.023
)
;‘i$ Rubber films and silicon
> grease 0.008 - 0.012
HeY
The brush bearing platen was first developed by
»‘-“G- v
ﬁ% ! Kijel]man$52) for soils testing and was later modified for
é}.: concrete testing by Hilsdorf.(53) As its name suggests, the
;ﬁ‘x surface of the platen resembles a brush. The space between the
g;! "bristles" allows the specimen to expand and contract freely. Also,
‘;}f by bonding the bristies to the specimen, tensile 1loads can be
jk}; applied. The brush platens used by Kupfer, Hilsdorf and Riisch(36)
:252 were steel filaments of cross-section 3 x 5 mm and with 0.2 mm
:‘f separation. The free length of the filaments varied from 65 mm to

105 mm with the shorter bristles being used on higher strength
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concretes. The authors were able to maintain flatness of the brush

ﬁ‘ bearing surface to within 2 x 1073 mm and no filament buckling was
2“ observed during loading. More recently brush bearing platens have
) been used by Siate and his coworkers.(33’35) Kupfer, Hilsdorf and

Rusch performed two series of biaxial compression experiments, on
ﬁi three different types of concrete. In one series brush bearing
* platens were used and in the other steel platens. Resulting average
biaxial failure surfaces are shown in Figure 2-22 where strength
enhancement arising from the steel platen's constraining action can

& be clearly seen.

% The third type of load platen for cubes and plates is the
'k fluid cushion pioneered by Ko and Sture(54) and applied to con-
{ crete by Andanaes, Gerstle and Ko.(43) Here load is applied to
‘; the specimen through fluid filled membranes pressed against the
jg specimen. The membrane possesses little stiffness and thus does not
% constrain specimen lateral motion. By inserting a steel plate
" between the membranes and the specimens, the authors obtained higher
o biaxial compression strengths than were obtained without the plates,
A Figure 2-23. This again demonstrates how friction between specimen

and stiff load platens increases measured strength. As with the
steel load platens the fluid cushion cannot be modified to 1load

g specimens in tension.

K

) . . . . .

%; For hollow cylindrical specimens frictional constraints have
w' not usually been of concern since sufficiently long specimens have
[A

been used, so that the specimen central section was free of end
effects. By applying compressive and torsional 1loads at the

R/
ﬁ cylinder ends states of compression-tension have been achieved and
reliable results obtained.

5 Rosenthal and Glucklich(49) attempted to obtain biaxial
1' compression data using hollow circular cylinders whose axes were
:: vertical. The cylinders were placed inside a rubber bladder which
el in turn was inside a thick steel tube. The clearance between
i concrete and steel was one inch. Biaxial loading was achieved by
%; simultaneously pressurizing the bladder and applying vertical end
d
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, Figure 2-23. Failure surfaces for biaxial compression using
fluid cushion and unlubricated steel platens.
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loads. The biaxial, compression, failure envelope obtained is shown
X in Figure 2-24, and it can be seen that for equi-biaxial compression
: (o1 = 02) stress levels are twice the wuniaxial compressive
W strength rather than the usual 1.2. The reasons for the increased
. strength level are not clear but are probably related to friction
¢
f; between the bladder and the specimen. As evidence of this it can be
gﬁ noted that without an applied vertical load the cylinder failed from
gﬂ a single horizontal circumferential crack, a failure mode usually
related to vertical tension. Tension could have been introduced
3:§ into the specimen if pressure induced membrane streses in the top of
ﬂﬁ the bladder were gradually transferred to the cylinder through
f% friction so that away from the ends of the cylinder there were
i; minimal membrane stresses in the bladder.

It is clear from the preceding discussion that great care must
be taken to ensure no extraneous stresses are introduced that give
spurious results. The most promising general purpose load platen
appears to be the brush bearing type because it can be used in both

" tension and compression and is free of frictional effects.

2.3.4 Stress-Strain Results

The data for the stress-strain response under monotonic,

$f biaxial loading up to failure appears to be reasonably complete for
:ﬂ ‘radial' or 'proportional' loading where the stress components are
%§‘ maintained at a constant ratio throughout the experiment. The
) discussion is divided into three parts corresponding to biaxial
ﬁw compression, compression-tension and biaxial tension.
%s A. Biaxial Compression
5:: Figure 2-25 summarizes results for uniaxial and equi-biaxial
. compression obtained by Weigler and Becker(41) in 1961 wusing
gﬁ plate-like specimens of dimensions 10 x 10 x 2.5 cm. All results
:;I are for the same concrete whose uniaxial compressive strength was
:5{ 6700 psi. Compared to the uniaxial response the equi-biaxial
; response exhibited more nonlinearity and larger stresses and
iﬁ strain. However, both responses did have an increasing volumetric
B
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Wi Figure 2-24. Biaxial failure surface.
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strain prior to failure. Since concrete under biaxial comprssion
does not exhibit surface cracking, and since concrete aggregate
remains linear elastic, the nonlinearity arose from relative motion
of the aggregate and mortar and possibly from nonlinearity in the
mortar response. Larger obtainable stresses and strains relative to

uniaxial response are to be expected for biaxial loading because the
multiaxial stress state inhibits cracking which is the ultimate
failure mode.

The wost comprehensive study of concrete biaxial response was

(36,55-59)

performed by Kupfer and his co-workers and is reviewed

by Dei Po]i.(so) Figure 2-26 shows typical results taken from

Reference.(36)

In Figure 2-26a are compared the stress-strain
response for three proportional loadings. The most surprising
result is that the maximum obtainable stress did not occur for
equi-biaxial compression but instead for a stress ratio 01/02 =
- 1/- 0.52. Again it is clear that Tlateral expansion (53) was
greater for biaxial compression compared to uniaxial compression.
Figure 2-26b shows that, in agreement with intuitive expectation,
volumetric compression was greater for biaxial compression than for
uniaxial and in agreement with Weigler and Becker(41) the
volumetric strains under biaxial compression started to increase

just before failure.

On each curve in Figure 2-26 are marked four points., The

elastic limit corresponded to the first deviation of response from

1 3§ linearity. As the degree of biaxiality of the compressive loading
%ii increased the linear elastic range increased, thus lending credence
3o to the idea that biaxial load constraint inhibits initiation of
‘.ﬁ“ additional microcracks. The inflection point corresponded to the
PER stress-strain state where the volumetric strain rate changed sign
:E;% and marked the beginning of the slowing down of volumetric
'i:& shrinkage. At the inflection point a new deformation mechanism was
iqﬁﬁ introduced that grew as the load increased and counteracted the

compressive actions of the applied loads. This new mechanism was
major microcracking which occurred in the plane of the applied

1 X
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loads. The sustained 1load strength of concrete probably lies
between the inflection point and the point of minimum volume. At
the minimum volume point microcracking had become so wide spread
that it swamped any tendency of the specimen to contract. The
maximum stress point indicated that under biaxial loading concrete
has a softening branch akin to the uniaxial response. However,
Kupfer did not examine this possibility in detail.

Figure 2-27 1is taken from a study by Liu, Nilson and

S]ate(35)

0.5 inch and contained circular inclusions of various diameters and

who used a model concrete. Their specimens were 5 x 5 x

randomly distributed. As the magnitude of 9,y increased relative

to o) the corresponding strain €y went from expansion to com-
pression. At o, = 0.201, €y3 Was essentially null for most of
the load history suggesting that for the concrete used, v = 0.2. In
consonance with the findings of Kupfer, Hilsdorf and Rﬁsch(36) the
maximum stress occurred for 02/01 = 0.5.

B. Tension-Compressiaon.

Kupfer and his co-workers(36’55'59)

used their brush bearing
platen testing machine to obtain biaxial compression-tension data.
Sample results are shown in Figure 2-28. It can be seen that as the
tension component increased, attainable levels of stress and strain
decreased and when the tensile stress had grown to twenty percent of
the compressive stress, strength was only thirty percent of the
uniaxial strength. Also, the response exhibited increasingly less
nonlinearity as the tensile component increased, indicating a

transition to a brittle, cleavage-type of fracture.

C. Biaxial Tension

There is very little data on biaxial tension, Figure 2-29 is
taken from Kupfer, Hilsdorf and RUsch(36) and shows that as the
loading changed from uniaxial to equi-biaxial tension, the specimen
stiffened and obtainable levels of strain decreased. Also, the
maximum obtainable stress levels were essentially independent of the
stress ratio 01/02 implying that for biaxial tension, strength
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is governed by a maximum stress component criterion derivable from
uniaxial test results. Finally note that the response up to failure
was essentially linear elastic.

2.3.5 Biaxial Strength Results

Most biaxial experiments on concrete have attempted to
determine the strength of concrete under biaxial loads and many
results have been obtained. The objective of such tests was to
determine biaxial stress Jlevels necessary to cause concrete to
fail. In principal stress space, biaxial stresses lie on planes
where one principal stress is null. On such a plane, stress
combinations at failure define a strength or failure envelope. In

the following only data which is considered reliable is presented.
Also, most results refer to short-term loading.

Kupfer, Hilsdorf and Riisch(36) published results for three
different concretes whose uniaxial compression strengths ranged from
2700 psi to 8350 psi. The data was obtained from proporticual load
histories using brush bearing platens so that frictional effects
were minimized. Strength (i.e., failure) envelopes in terms of
principal stresses 0,0, are shown in Figure 2-30 where stresses
have been normalized with respect to fé for each concrete. From
Figure 2-30 it is clear that the normalized strength envelopes are
essentially insensitive to concrete uniaxial strength. The authors
found that biaxial compressive strengths were greater than uniaxial

and that concrete could sustain only small tensile loads when
biaxially stressed. For equi-biaxial compression failure occurred

) when o; = o, = 1.16 f_ while for the load trajectory o =
R 20, failure occurred at oy = 1.27 f_.
&l
)
5&5 Gerstle et .gl.,(38) conducted a comprehensive test program
“'c designed to identify the sensitivity of biaxial compression failure
¢ :: surface to test technique. Seven laboratories in four countries
2 performed tests on specimens cast from the same concrete mix. The
?Jb anticipated experimental variables were load platen design and
ﬁ; specimen shape; specimen moisture loss was an uncontrolled variable
hy which for standard 3 in. x 6 in. cylinders, varied from 0.2 to 2.7
ohel
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Figure 2-27. Biaxial compression response for model concrete.
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percent., The five types of load platens employed in the tests,

(along with their two letter identifying codes), are shown in Figure g
2-31. In Figures 2-32 and 2-33 are given the failure envelopes '
found by the various test techniques.* The principal observation is
that specimens tested with unlubricated solid steel load platens
(denoted by DP) gave higher strengths than specimens tested with
fluid cushion (FC), lubricated (LP) and brush bearing (BR) platens. '
Also, there is much more scatter among the results obtained from dry
platens than among the remaining results. )

Several authors have focused their attention on the
tension-compression quadrants of the biaxial stress plane. Bresler !

and Pister(45’46) (48) performed compression-tension l

and Isenberg
experiments on hollow circular cylindrical specimens. [Isenberg's

results have also been reported by Johnson and Lowe.(Gl) Based on

their experimental results Bresler and Pister proposed the failure

surface shown in Figure 2-34., From the figure it can be seen that

in the compression-tension region strength is primarily controlled ;
by the tensile stress component. The slight increase in attainable
tensile stresses indicated in Figure 2-34 for moderate levels of
compressive stress levels is not necessarily real but may be only an
artifact of the curve fit employed by Bresler and Pister.

The results in Figures 2-35 and 2-36 are also for the biaxial
compression-tension failure surface normalized to f&. When the !
expanded tension scales are taken into account, the results are
comparable to those of Bresler and Pister. In Figures 2-35 and 2-36
both sets of authors believed the slight 's' shape to the failure \
surface might be real and indicated that the compression-tension ‘
quadrants were transition zones between the gradual crushing failure
of uniaxial compression and the sudden cleavage failure of uniaxial
tension. Figure 2-35 is a magnification of the compression-tension

* Acronyms BAM, ENEL, ICL, TUM NMSU, UCD and CU, which identify the
performing laboratories, are defined in Reference 38.
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N and biaxial tension regions of Figure 2-30 and raises the possi-

i; bility that the failure surface is sensitive to f.. In Figure ‘

G 2-36 the wide scatter between data obtained by various authors is ;

!; evident. !

é The only systematic determination of strength in the biaxial f

S tension quadrant was performed by Kupfer, Hilsdorf and RUsch.(36)

2 Results are shown in Figure 2-35 and indicate that failure occurred

a whenever a stress component reached the uniaxial tension strength. ]

, Very little data exist on the sensitivity of failure surface

K definition to differences in the path traversed in stress space from

Y zero stress to failure. Taylor and Patel(62) subjected both wet E

': and dry concrete cubical specimens to two types of stress history.

[ 4 For the first type radial loading was used. In the second type a

: sequential loading was employed where first one principal stress was

Q incremented and then subsequently held fixed while the other

A principal stress was increased from zero until failure occurred. 3

) The wet specimens were cured in water and kept moist during tests by

S a damp cloth while the dry specimens were stored in a normal

., laboratory environment for two weeks before testing. Results

: obtained are shown in Figure 2-37 and 2-38. For wet specimens the |
average strength obtained by sequential Tloading was greater than

J that for proportional loading. For dry specimens average strength :

b for proportional and sequential loading were approximately equal. f

2 Thus the evidence suggests that under the right conditions it might f

f not be possible to define a unique failure surface for biaxial

( stress states. )

" 2.3.6 Experimental Support for Plasticity Theories of Biaxial )

! Response !

Constitutive theories for concrete biaxial response are
sumetimes developed using the concepts of conventional plasticity.
In these theories an initial yield surface in principal stress space
' is postulated. The yield surface is closed, contains the zero
stress state and has a shape similar to the failure surface. For
Y all stress states inside the initial yield surface, concrete
! response is elastic. As stress component magnitudes increase, the
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stress state reaches the initial yield surface and the constitutive
h model predicts that on further loading some irreversible damage
occurs in the concrete. With continued 1loading the yield surface
expands in all directions so that the increa%ing stress state is

0 always on the yield surface. If the stress should subsequently
f_ decrease, the yield surface maintains its size and position and the
9 unloading response is elastic as is the response along all stress
M trajectories inside the yield surface. Additional damage to the
& concrete occurs only if the stress again reaches the yield surface

and expands the yield surface farther.

W Conventional plasticity theories also require that for all
points on a yield surface the material secant modulus be the same.

Experimental evidence to support plasticity models is
i limited. Dei Poli(so) has reported experiments by Kupfer and his
(< co-workers, Figure 2-39. In the figure Eo is the initial concrete
e secant modulus and the curves, plotted in principal stress space,
are curves of constant secant modulus. As stress increases, the
secant modulus decreases until at failure it is thirty percent of
its initial value. The small shaded area represents an elastic
region whose perimenter has similar shape to that of the failure
surface and could serve as an initial yield surface. The remaining
ii curves of constant secant modulus also are similar in shape to the

rx

5 X X X X X1
» Wb o o

failure surface and could serve as subsequent yield surfaces.

o Additional biaxial test data have been published by

gﬁ Vi]e,(40) Figure 2-40. In the figure the failure or ‘'ultimate'
y surface is plotted in principal stress space along with a
Zé 'discontinuity' surface. The discontinuity surface, whose shape is
<

similar to the failure surface, represents a 'critical point' where
. 'there is a marked change in the mechanical properties of the
ﬁ material and more severe cracking takes place which leads eventually
:“, to failure.' Thus the discontinuity surface does not represent
initial yield but rather some subsequent level of damage. However
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the surface is compatible with plasticity theory in that when the
yield and discontinuity surfaces coincide, all points on the yield
surface would experience the same ‘'marked change in material
properties.’

2.3.7 Issues

The qualitative response of plain concrete under monotonic,
biaxial loading up to failure is well understood. The principal
shortcoming is the lack of agreed upon experimental procedures so
that different laboratories performing the same tests on specimens
fabricated from the same batch of concrete yield the same results.
The international program reported by Gerstle et gl.,(38) is a
necessary first step and what are now required are efforts to
reconcile differences in results followed by development of

generally agreed upon testing procedures.

The most serious inadequacies in the experimental data base
are results on

o biaxial cyclic stress-strain response
() biaxial post-peak softening behavior
) strain rate sensitivity

] microcracking induced anisotropy.

A1l sets of data are needed before it is possible to predict the
response of reinforced concrete protective structures for 1load
environments of interest to the defense community.

2.4  TRIAXIAL RESPONSE OF PLAIN CONCRETE

For most analyses of protective structures, three-dimensional
constitutive theories of concrete are required. When a theory is
first formulated the developer validates it by fitting the theory to
existing data. The uniaxial and biaxial data discussed in Sections
2.2 and 2.3 have traditionaliy formed the major portion of that data
base. However, in the last few years, reliable triaxial data has
been published. The objective of this section is to review this
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triaxial concrete data. As in the previous section presentation of
triaxial data is prefaced by discussions of concrete micromechanics

£, and experimental procedures so that greater insight into the data
%j can be achieved.

v

s

2.4.1 Remarks on Micromechanics, Variability

i

;* Very little research has been done on the micromechanical
if behavior of plain concrete under triaxial loading and what data
85

i there are appear contradictory. Krishnaswamy,(63) subjected

four-inch cubes to various levels of triaxial compression, sectioned

the tested specimens and examined them for microcracking.
Krishnaswamy's principal observation was that the presence of all
around compression retarded microcrack growth. For example, under
uniaxial compression, cracks at the aggregate-mortar interface
started to grow at a compressive strain of approximately 0.0005,
while for triaxial compression, with minor compressive stresses
approximately ten percent of the major stress, interface cracking
did not occur until the major compressive strain reached (0.0018.

'g Krishnaswamy also noted that at failure the amount of microcracking
;Y induced by either uniaxial or triax compression was approximately
%J the same.

. Palaniswamy and shah(®4) tested 3 in. D x 9 in. L concrete
: cylinders. Most of their results were for moist concrete with a
;? uniaxial compressive strength of 2.3 ksi. In their tests the
ﬁ! authors applied axial and lateral stresses up to 24 ksi and 9 ksi
¥ respectively. The 1loading path was always one of hydrostatic
» loading followed by additional axial loading with the 1lateral
?‘ pressure fixed.

[\

The results of Palaniswamy and Shah fell into two distinct
regimes according to whether the maximum lateral stress at failure
satisfied either o, ., < 4 ksi or ¢

‘44

> 6 ksi. For low lateral

T

.v.. e

lat
pressures, post-test examination showed:

) surface bulging and cracking increased as
g1at increased

- -

o -
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° failure was of a splitting or tensile mode
similar to uniaxial failure

] compressive deviatoric stress components were
greater than the hydrostatic component

o maximum longitudinal strain increased with

e Yiat

‘3‘5 X .

?ﬁ? . bond cracking between aggregate and mortar
ﬁﬁﬁ increased with o3¢

o

] ultrasonic pulse wave velocities in both the
longitudinal and lateral directions were
increasingly attenuated as o1t increased.

Figure 2-41 shows the sensitivity of pulse velocity and total

bond crack length to maximum lateral confining pressure. For high

‘}ﬁ maximum lateral pressures (°lat > 6 ksi) an entirely different
i -

ﬁ:; behavior was exhibited:

3! fa

a&j ° little or no post-test surface bulging or

) lateral surface distress

0 failure was by mortar and aggregate crushing

Q?ﬁ e  the hydrostatic stress was greater than the
;153 deviatoric components
X‘\.'v\‘

<) ) lateral strains were always compressive

aka L bond cracking diminished as o},3¢ increased
St

O
Jﬁﬁu ° ultrasonic pulse wave velocity attenuation
ﬁ;h decreased as ojat increased.
e Additionally the authors also tested specimens that had been
.
&\: previously loaded to a hydrostatic stress of 8 ksi and found no
k.{ deterioriation in either stiffness or strength.
i

& The results of Palaniswamy and Shah clearly showed the
Y sensitivy of concrete failure mode and load to the level of imposed
3 hydrostatic stress, a result reflected by the entire triaxial data
L)) | :
P! base. Whether the results of these authors are in agreement with
AN those of Krishnaswamy is not clear since the two experimental
qu programs used entirely different specimens and load paths. Both
1qd

dgﬁ_ contributions indicate that triaxial stress states inhibit bond
::i'::
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¢rack initiation, However, the first paper concludes that at
failure the amount of bond cracking is almost always the same while
the second paper indicated bond cracking at failure first increased
and then decreased as the magnitude of stress components increased.

The dual natures of concrete triaxial response and failure
mode indicate the presence of competing influences. If the stress
has a large deviatoric component then significant tensile-deviatoric
stress exists thus encouraging a splitting failure. At  low
hydrostatic pressures, the presssure merely holds the specimen
together longer thus permitting higher 1levels of cracking. At

higher levels of pressure, pressure actively inhibits cracking thus
lending credence to the idea that aggregate-mortar interface bond
failure is in shear, the faiiure shear stress level being controlled
by hydrostatic pressure.

Plain concrete strength is conventionally characterized by its
uniaxial strength fé. For biaxial compressive stress states the
maximum obtainable stress is approximately 1.3 fé and so fé
still characterizes concrete strength and the size of the equipment
used in biaxial tests is essentially unchanged from (though more
complicated than) that used in uniaxial experiments. For triaxial
testing the same is not true. Under triaxial compression concrete
can support stresses larger than four times f& because of
constraints imposed on the specimen by the hydrostatic component of
loading. However, in most triaxial experiments maximum stresses are
much smaller than this because of equipment size, and concomitant
cost constraints. For example, to achieve stresses five to ten
times fé on four-inch cube specimens of 5 ksi concrete would
require 500,000 - 1,000 000 1b actuators and sufficiently strong
frames to support them. Consequently it is wusually practical to
explore only a limited portion of the concrete, triaxial stress,
failure envelope. The objective of the following subsections is to
show the wvariability that exists in concrete triaxial testing
techniques so that the scatter seen in data can be partially
explained in terms of test parameter differences.

~

," oy e A - A e R \,.'“' "3.‘.- < \ R TR SRR R CTC i CAY ES A

iads .
v" '! 3 t. ' PFL PR U PG TR o PN A 2 P R TR e S S St i A 3
. l‘ KRERAWN) ‘n‘:‘«\ DN :' e ‘.b".i'*"‘i" V ‘.ha h l\ Xl 5‘ MO N l Ok 3



LG T S T AT

2.4.2 Triaxial Test Specimens

In triaxial tests two specimen types are used:
] solid cylinders
® cubes.

Cylinders are used in "conventional" triaxial testing where two of
the three principal stresses are always equal. The axial or
longitudinal stress is one principal stress while the other two
principal stresses equal the lateral or radial load applied to the
specimen's curved, lateral surface. All1 data from a conventional
triaxial test can be plotted on a single plane, the Rendulic plane,
in principal stress space. Further it is impossible to subject the
lateral surface to tension. Thus only a limited amount of data can
be obtained from cylinders.

The cube used in "true" triaxial tests, is a more versatile
specimen since all three principal stresses can, potentially, be
varied independently and tensile stress states can in principle, be
induced by bonding the load platens to the specimen.

No established guidelines exist for desirable specimen size.
To obtain an approximately homogeneous stress state in a specimen
aggregate size (A) must be small relative to specimen minimum
dimension (D). Typical values for D/A are shown in Table 2-4 where
the minimum and average values were four and eight respectively.

Johnson and Lowe(68) believed that concrete strength increased as

(73)
cm, 16 cm and 20 cm cubes were essentially identical while Dei
Po]i(74) reporting on the work of others, noted that 1 in. maximum
aggregate concrete was seven percent stronger than 2 in., maximum
aggregate concrete. Thus, based on a limited amount of data,

D/A decreased. Bertacchi found that strength results from 10

triaxial strength appears sensitive to maximum aggregate size.

2.4.3 Triaxial Testing Machine Considerations

Machines for triaxial testing fall into two classes corre-
sponding to the two specimen types. For cylindrical specimens an
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- Table 2-4
; Geometric data for specimens used in triaxial tests
R Max imum
o Aggregate Size
- Dimensions Size Ratio
N Authors Reference (in) (in) (D/A)
iy
S Kr i shnaswamy (63) 4 <0.75 5
[
o
rh Palaniswamy and Shah (64) 30 x 9L 0.50 6
'3
E Chinn and Zimmerman (65) 60 x 12L <0.50 12
l. -
LX)
?‘ Gardner (66) 3D x 6L 0.75 4
N
3 Gerstle et al (67) 2.5 0.50 5
X

6.4D x 12.8L 0.5 13
= 4D x 10L 0.5 8
L 3 0.5 6
)
. 2 0.5 4
\
}f 4 0.5 8
;3: Johnson and Lowe (68) 1.50 x 3L 0.93 16
L
f’ Launay and Gachon (69) 2.8 and 5.6 -- --
s
N Mills and Zimmerman (70) 2.25 0.375 6
. {
:3 Newman (71) 4D x 10L 0.8 5
a‘
hat Richart, Brandtzaeg
[, and Brown (72) 4D x 8L -- --
Qi D and A are minimum specimen dimension and maximum aggregate size respectively,
W‘
Ry
[)
\
)
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oil filled chamber surrounds the specimen lateral surface which, in

5 turn, is coated with a non-porous material such as neoprene to

g prevent oil from filling cylinder surface pores and inducing prema- :
? ture failure. Lateral surface loads are imposed by pressurizing the !
: oil chamger. Axial 1loads are applied through a hydraulically

%. actuated load platen. y
:E For cubical specimen tests three different platen designs were

i‘ used to minimize friction induced lateral movement constraints:

° brush bearing

ey

. fluid cushion
o  steel plate. j

The brush bearing and fluid cushion platen designs were discussed in
Section 2.3.3 and will not be reviewed further.

T TR N e e g

) Table 2-5 shows lubrication schemes employed in conjunction

9 . . . (65)

with solid steel plate platens. Krishnaswamy was the only

@ author to study the effects of different lubrication schemes on

;4 compressive strength in a true triaxial test where all three stress

;. components were varied independently. His results are summarized in

K Table 2-6 and it can be seen that as the amount of lubrication

W increased the maximum compressive stress at failure (03/fé)

; decreased, thus suggesting that wunlubricated 1load platens gave

N artificially high triaxial failure stresses.

< 2.4.4 Triaxial Test Procedures :
i; While most authors provided details on specimen composition

:: and curing, almost no description was given of testing procedures.

1 In particular only Gerstle et gl.,(67) Kotsovos(75) and Chinn

g and Zimnerman(Bs) noted specimen loading rate which varied over f
¥ the range 0.2 ksi/min to 5 ksi/min, In addition, Green and t
’s Swanson(76) performed their experiments at a constant strain rate '
L of 10'4/sec. Specimen loading path in principal stress space also

. differed considerably between authors. Palaniswamy and Shah(sd)

E initially loaded their cylinders hydrostatically then, holding the

K
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3 Table 2-5
Lubrication schemes for reducing friction at the

y specimen platen interface
;. Author Reference Lubricating Scheme
9 Gerstle et al. (67) 4 polyethylene sheets with molyb-
i denum sulphide grease
iQ Gerstle et al. (67) 2 polyethylene sheets 0.002 in.
g thick with axle grease
b
Y Gerstle et al. (67) 1 layer of grease
§ Krishnaswamy (63) 1 polyethylene sheet (0.006 in.)
5 Krishnaswamy (63) 2 polyethylene sheets with grease
)
>
f Launay and Gachon (69) 4 aluminum sheets (0.4 m) with
{ talc
I Mills and Zimmerman (70) 2 sheets of 0.003 in. teflon with
5 axle grease
| Mills and Zimmerman (70) 2 sheets of 0.004 in. polyethyl-
K ene with grease.
B Table 2-6
\
3 Effect of lubrication scheme on true triaxial
N failure stress, Krishnaswany(63)
q
b 1 Layer 2 Layers 0.006 in.
\ 0.006 in. Polyethylene
- Nonlubricated Polyethylene Pius Grease
oéa) 03 03 03 02 03
3 0.25 2.35 0.20 1.79 0.26 1.68

0.5 2.31 0.50 1.85 0.52 1.73
y 1.0 2.41 1.0 2.00 1.00 1.79
£ 1.0 2.40 1.5 2.05 -- --
o -- -- -- -- 2.00 1.89
{
§
.
b (a)a11 stresses normalized to fe, o1/fc = 0.20,
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lateral pressure fixed, increased axial pressure until specimen
failure. Krishnaswamy(63) loaded his cube specimens in the three
principal stress directions, sequentially. Chinn and

Zinmerman(ss)

subjected cylinders to four different load paths.
In their notation Type I loading coincided with that of Palaniswamy
and Shah., Type II 1loading was initially hydrostatic followed by
increased radial loading holding the axial load fixed. Type III
loading was purely hydrostatic while for Type IV loading axial and
radial stresses were increased at a fixed ratio. In the
El-(64)
first loaded specimens hydrostatically and then followed straight

line trajectories in the octahedral shear plane. Finally Mills and
(70)

international cooperative research program, Gerstle et

Zimmerman applied an initial hydrostatic load to their cube
specimens, then increased two principal stresses to a prescribed
level and finally increased one of these two stresses until failure

occurred.

There was also a paucity of definitions of what constituted
specimen failure perhaps because direct visual examination of the
specimen was not possible during tests. Mills and Zimmerman(70)
had 1little trouble recognizing failure since their specimens
explosively disintegrated. Chinn and Zimmerman assumed failure had

occurred when the stress in the specimen started to drop.

Dei Po1il’®

(i) Shickert and Winkler
of the strain components started to experience abnormally 1large
increases, (ii) Bertachhi and Bel1oti(78) used, as a failure
criterion, a sudden increase in strain in one direction accompanied

in his review of experimental work noted that
(77) assumed failure had occurred when one

by a sudden decrease in strain in the other two directions and (iii)

Bremer(79)

used a loading criterion and assumed failure when one
load component deviated abruptly from that programmed by remaining
constant. Most other authors did not describe their definition of

specimen failure.
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2.4.5 TRIAXIAL TESTING RESULTS

Most triaxial test data concerns the definition of a failure
surface under monotonic loading. In metals plasticity the yield
surface in three-dimensional principal stress space is an infinitely
long circular cylinder whose axis is the hydrostatic pressure line.
From the discussion on biaxial stress states it is clear that the
failure surface for concrete is not a cylinder because its
intersection with a biaxial stress plane is not an ellipse.
Alternatively said, concrete failure 1is pressure dependent. In
addition, the intersection of the three-dimensional failure surfaces
with planes of constant pressure is not circular. Consequently
concrete failure cannot be accurately described in terms of stress
invariants I1 and J2 alone. Gerstle et gl,(67) in a study
that paralleled the biaxial investigation summarized in Section
2.3.5, reported results for seven laboratories that used the same
concrete in all tests. Figure 2-42 shows failure stresses found in
a typical 60° sector of the octahedral (i.e. constant hydrostatic
stress) plane at a pressure 9, of 5§ ksi. Considerable scatter
existed between the various sets of data with unlubricated platen
machines giving the highest strengths. However, failure stress on
path 1 was consistently farther from the hydrostat (o1 = oy
=03 = on) than the failure stress on path 3, where paths 1, 2,
3 were loadings up the hydrostat to o, = 5 ksi followed by loading
in the octahedral plane. In the octahedral plane the 9] increment
on path 1 was compressive while the a3 increment on path 3 was
tensile.

Launay and Gachon(sg)

performed a more extensive study of
failure surface shape. Figure 2-43, which gives their results,
shows a 60° arc of the failure surface's intersection with various
octahedral planes, o, = 3a°a, where o, was uniaxial
compressive strength. The results in Figure 2-42 correspond to a =
3 and appear to be comparable. From Figure 2-43 it is seen that as
the amount of hydrostatic pressure increased the curves became more

circular.
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Launay and Gachon also plotted, Figure 2-44, the intersection
of the failure surface with 9 = s which corresponds to the
plane of data for conventional triaxial experiments. The inclined
line marked 03/00 is the principal stress axis o3 normalized
to uniaxial axial strength o, and the inclined Tline 90°
anticlockwise from it is the stress trajectory e = 0y, 03 =
0. Failure envelope expansion with increasing confining pressure

(here parameterized as a) is clearly evident.

Figure 2-45 shows the results obtained by Chinn and
Zimmerman(as). The authors probed the failure surface along
several different stress trajectories and for confining pressures up
to 20 fc‘. Their data possessed some scatter particularly at
higher pressures but, after allowing for a reversal of axes, the
trends are identical to those in Figure 2-44. The results of the
above authors are also in agreement with the data collated by
Johnson and Lowe,(68), Figure 2-46, from various sources.

From the preceding five figures a clear definition of failure
surface data can evolve. The failure surface is highly pressure
dependent in compression, possesses a small tensile stress region
which is pressure insensitive and, has noncircular cross-sections on
octahedral planes. Finally the intersection of the failure surface
with the plane o) = o3 is two curved lines that straddle the
hydrostat.

As part of the international cooperative research program
coordinated by Gerstle,(67) Schickert and Ninkler(72) performed
a beautifully documented set of true triaxial (and biaxial)
compression experiments. Stress-strain plots for every biaxial and

triaxial test were separately reported together with average results
and 99 percent confidence 1limit. Also both unlubricated and
flexible steel platen designs were investigated. The principal
findings and conclusions of the study, in addition to those stated
in the previous paragraph are:
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° unlubricated platens produce higher strengths than

*xé flexible platens
2? . unlubricated platens produce more scatter in data
o than flexible platens
] failure always occurs by extension in the direction
éﬂ of minimum principal stress.
ﬁé Figure 2-47 shows stress-strain data on a 34 N/mm2 uniaxial
5? strength concrete. In Figures 2-47(a), and (b) hydrostatic stresses
of 0.75 fc' and 1.5 fc' were first applied followed by loading
i?‘ in path 1 on the octahedral plane (i.e., 2Aa2 = 2A03 = —Aol).
;g The two confining pressures increased 9y to 1.8 f'c and 3.2
ig f'c respectively at failure thus demonstrating the beneficial
{: effect of confining concrete. Also compressive strain € at
{f failure was 3-10 times greater than that in uniaxial tests with most
ég of the strain occurring after departure from the hydrostat. Thus
%ﬁ concrete is more ductile in triaxial compression than is predicted
o by a simple scaling of uniaxial strain at failure by the ratio at
é failure of triaxial stress to uniaxial stress. When the two cases
j in Figure 2-47 are compared it is seen that for low confinement,
Q: volumetric strain still retained the characteristics of its uniaxial

response with a dilatational trend setting in just prior to
failure. For the high confinement case no dilatation occurred and

-
-

at failure all strains were still compressive.

(76)

Green and Swanson briefly studied triaxial cyclic

loading using cylindrical specimens of a 6 ksi uniaxial strength

SRR

:? concrete. Results for a single test are shown in Figure 2-48, where
sf symbols on the curves were used to indicate corresponding points in
%ﬁ the load history. A 2 ksi hydrostatic preload was first applied and
3} then the axial stress was cycled in compression. In Figures 2-48(a)
:Q negligible stiffness -degradation is evident while some hysteresis in
p the second cycle 1is evident, The pressure-volumetric strain
:a response was more complicated with dilatation occurring shortly
-~ after reloading to the puint of previous unloading. The resuits in
é: Figure 2-48 were for a low confining pressure and for only two load
k)
;
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- cycles at or below the concrete monotonic loading strength. Clearly
DD : .
;ﬁ& much more data are needed to fully represent concrete triaxial
B . .
gége response under cyclic loading.

b

13,8

f 2.4.6 Qutstanding Issues
ﬁfz Experimental data from concrete triaxial tests have mainly
?§~) covered two facets of concrete response: (a) failure under mono-
:* ) tonic loading and (b) stress-strain response under monotonic
" loading. For triaxial stress states limited or no data are avail-
ﬁf? able on the following possible response features:

N

U .
4.% ) post-peak response - strain softening
LA
L2 ° microcracking induced stiffness degradation
‘ﬁfj ° microcracking induced anisotropy
i,f: o cyclic stress-strain response

) ) strain rate sensitivity.

%?3 Given the multiplicity of adverse 1load environments that
{53 prote. ..ve facilities must survive, it 1is important that the
;)‘ existence and relative size cf these response features be determined.
o
kﬁ From the discussion of uniaxial results it is anticipated that
)
@Q. concrete failure will not occur when the stress reaches the failure
s&é surface if the concrete is properly confined. Rather, the stresses
. will subsequently decrease as the strains increase and neighboring
% ) parts of a structure will be exposed to increased loads. If this is
(]
$ the case then constitutive theories that assume failure has occurred
iﬁ‘ when the stress reaches the failure surface will be overly

) conservative while theories that maintain the stress at the value
a . . . .
g attained on the failure surface will be unconservative,

4
ff: Qualitatively concrete response can be described in terms of
j) microcracking. In the discussion on uniaxial and multiaxial experi-
f:} ments it was shown that microcracks propagate perpendicular to the
ﬁk direction of maximum deviatoric tensile stress. It is reasonable to
W,
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assume that microcracking in a particular direction will have two
consequencies. First stiffness perpendicular to the cracking will
be decreased while that parallel to the cracks will not. Secondly
the directionally dependent stiffness will imply that concrete has
become anisotropic both in its incremental stress-strain law and in
its failure strength. Currently the authors are aware of no
published data on microcracking induced anisotropy.

The cyclic stress-strain response data obtained by Green and
Swanson pointed to a complicated behavior even for the limited case
of conventional triaxial experiments. The consequences of such
deformation patterns in a protective structure are completely
unknown. Triaxial strain rate sensitivity could be important and,
in light of the demonstrated sensitivity of uniaxial data to strain
rates, should be explored.

A final item -- relative directions of the stress and the
inelastic strain increments -- should be added to the 1list. Such
data would aid in constitutive model development. However, no data
exist to suggest that constitutive model prediction errors are the

result of incorrectly assuming an "associated fiow rule."




) SECTION 3
o EXPERIMENTAL DATA BASE: STEEL-CONCRETE INTERACTION: !
:
3 3.1  REMARKS
& The least understood aspect of reinforced concrete response is
gg the interaction (load transfer) that occurs between the plain
%ﬁ concrete and the embedded reinforcing steel bars - rebars. Much
W time and money have been spent testing vreinforced concrete
’ structural elements. All such experiments can hope to achieve is a
f statement on how the particular element being tested responds to the
k: loads being applied. Nothing can be concluded concerning steel-to-
hi concrete load transfer. This is because in such experiments there
- is a multiplicity of active phenomena, few of which have been
if controlled enough to determine their individual contributions to
ij steel-concrete interaction. Additionalily, nonlinearity of
< reinforced concrete response precludes either scaling of results to
: predict stress and deformation of larger but similar structures or
o the prediction of the response of related structures. To understand
1 steel-concrete interaction, specially designed and carefully
Hf controlled and instrumented tests must be performed. What follows
| is a discussion of such tests and the results obtained therefrom.
E' As long as a reinforced concrete structure has experienced no
\ cracking there is negligible interaction between the steel and
2; concrete. In this case satisfactory stress-strain equations for
h reinforced concrete can be obtained by modeling the steel and
lﬁ concrete as a homogeneous continuum whose material properties are a
is weighted volume average of those of steel and concrete. After
N cracking has occurred, three new load transfer mechanisms are active
;f that are associated with:
,é ° Steel-concrete bond
;5 ®  Aggregate interlock
?’ ° Dowel action.
ig! Thus, any useful reinforced concrete theory must adequately simulate
l: these mechanisms. The steel-concrete bond transfers rebar tensile
@
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’ stresses into the surrounding concrete. For modeling purposes this
;&f transfer mechanism is idealized as an interfacial shear or ‘bond’

1¢g: stress, Figure 3-1, that is governed by a bond stress-bond slip

AN »

g%* law. Bond slip is the relative motion of a rebar and its sur-
s

0 rounding concrete. Aggregate interlock or “interface shear
AN .
;yg; transfer"® is the locking up of aggregate asperities on opposite
§

;&Q' faces of a crack so as to provide a shear stress transfer mechanism
3

gz: across a crack face, Figure 3-2. Finally, dowel action is the

resistance provided by reinforcing bars that span a crack, to
- sliding of the crack faces relative to each other, Figure 3-3. In
ék} the present research program emphasis was placed wupon the

f?. steel-concrete bond. Further work is needed to understand the roles
) played by aggregate interlock and dowel action in transferring load
{il from one area of a degraded reinforced concrete structure to another.
R
:5& 3.2 MECHANICS OF THE STEEL-CONCRETE BOND
L)
\ 3.2.1 Steel-Concrete Bond Mechanisms
At
)
37_ The processes that contribute to the steel-concrete bond have been
0 studied by Bresler and Bertero,(az) Dorr,(83) Edwards and
oy (84) (85) (86)
0 Yannopoulos, Ferguson et al., Lutz and Gergely and
73’ it is generally accepted that there are three contributions:
i
Y
f\ﬁ‘ ) adhesion
¢
2@& ° friction
3&?, e  mechanical interlock.
é \
@ﬁ Adhesion is the physical bonding of the concrete to the steel and is
i the result of chemical processes that occur when a reinforced
. concrete structure is curing. Friction is present because during
§4 the curing process the concrete shrinks around the reinforcing steel
A
; leaving the steel-concrete interface in a state of residual
!,“
»x‘ compressive stress. Finally, mechanical interlock arises from the
lugs on the surface of a deformed rebar interlocking with the
TR !
i; surrounding concrete. Of course, for plain rebars mechanical
Iﬁ* interlock is not present.
5
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" 0f the three contributions, mechanical interlock is the most
g; important contributing approximately half the strength of the
f% steel-concrete bond. Lutz and Gerge]y(ss) examined bond stress in
K}

R detail using finite element analysis. Their principal conclusions
o were:

)

33 ° Adhesive bond has a strength of 50-100 psi and is

e destroyed at low levels of bond slip.

Bt

R ) Compressive stresses arising from concrete shrinkage

. are approximately 100 psi.

¥

:{ ) Shrinkage stresses are sufficient to keep steel and

? concrete in contact during the slip process, i.e.,

nﬂ they dominate any tendency for the steel and

ol concrete to separate because of a Poisson's ratio

4 differential between steel and concrete.

W]

e

{ 3.2.2 Bond Failure Mechanism

¥

:& Depending on the geometry, bar type, rebar configuration and
2 stress history a reinforced concrete structure can exhibit a variety
A of failure modes. Here discussion is limited to experiments on a
éq single rebar in which case the observed failure types are:

a

i ° puliout

%4 e  transverse cracking

)

g‘ ° longitudinal cracking

ﬂ! ° rebar yielding or fracture.

:; Edwards and Yannopou]os(83) and Mains(87) found that plain
;4; bars pulled out without visible surface cracking. Mathy and
' Natstein(sa) noted that a similar pullout occurred when deformed
K

. bars were not embedded far enough into the concrete. Ferguson et
ﬁi 21.’(85) and Bresler and Bertero(sz) found transverse cracking
:Q occured when the rebar had insufficient concrete cover. In this
QQ case small radial cracks initiated close to the rebar and propagated
[}

o outwards in a plane transverse to the rebar. Goto(ag) tracked
%‘ growth of such cracks using a dyeing technique and theoretical
ﬁ‘ evidence for transverse cracks was given by Mirza and Houde.(go)
b
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;‘ Transverse cracking failure results when tensile stresses in the
: concrete exceed concrete tensile strength and can be inhibited by
25 using larger covers.

f{ Longitudinal cracking occurs because large hoop stresses are
- induced in the concrete by the rebar lugs that push the concrete
?ﬂ outwards as slip occurs. Untrauer and Henry(gl) and Tepfers(gz)
Eﬁ showed that 1longitudinal cracking occurs in beams and simple
W geometries under multiaxial Tloading. Many researchers delayed
) splitting by surrounding the rebar with stirrups (Mains,(87) Kemp
;ﬁ and N11helm(93)) or wire cages (Ferguson et a].,(94) Mathey and
}f Watsteln(sg))) Presently, no criterion exists for when
i longitudinal rather than transverse cracking should occur although
S; Lutz and Gerge]y(as) suggested a necessary condition is that the
? bond stress be greater than the rebar stress.

=§' Rebar yielding and fracture occur when rebar embedment length

is sufficient to preclude pullout, and cover is sufficient to
! suppress cracking.
§§

3.2.3 Experimental Procedures for Bond Stress-Bond Slip Determination

Specimens used to determine bond stress and bond slip

e information have been of the following form:

i \
;ﬁ e pullout |
b

N . ‘
& ° tension

& 0 structural element.

)

K The pullout specimen was the first to be used and is shown

4% schematically in Figure 3-4, One end of the rebar is embedded in a

“ block of concrete and the tensile load that is applied to the rebar

L. free end is equilibrated by a fixed steel restraining plate.

-? Pullout specimens are either 'concentric' or ‘eccentric' depending

H; on whether the rebar passes through the center of gravity of the

N concrete cross section. Concentric specimens have a circular,

? rectangular or square cross section, (Edwards and Yannopou1os,(84)

i (75), Mathey and watstein,(ss) Tepfers(gz) and Untrauer and
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Figure 3-4. Pull out test specimen.
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Figure 3-5. Tension test specimen.
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‘¥§9 internal channel, placing strain gages in the channel, and welding
:i'J the bar halves together again. With an internally strain-gaged
:&g* rebar the strain distribution in the rebar was measured and the bond
Heht .
‘ﬁ- stress distribution compatible with it computed as follows. From
He Figure 3-6 if e(x) 1is the 1local bar tensile strain then by
' g: equilibrium
X
l""
'...‘v U"EC T __Ado__AEdE
= * bT T pdx T T p dx (3-1)

e
:kgu where o and p are the stresses in the bar and bond, E is the bar
$§; Young's modulus, and A and p are the average bar cross section area
h&ﬂ and perimeter respectively. However, currently there does not exist
ggf any method of monitoring the slip between steel and concrete away

N
s

from the ends of the concrete cover.

‘iﬁi 3.2.4 Parameters Influencing Bond Slip and Attainable Bord Stress
;qg Some of the principal reasons why so little progress has been
A made in developing constitutive models for the interaction between a
b', rebar and surrounding concrete are the numoer of independent
". d > - .
ig‘ variables involved, the different measur- used to report
K experimental results and the great scatter that exists in data from
0
:‘§~ ostensibly identical experiments. Experimental variables at the
: : disposal of a researcher include at least those shown in Table 3-1.
A Additionally, there are non-quantifiable variables such as:
é;; . casting orientation
;§;j ° bar position
st ® curing history.
e
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dx

ibrated by bond shear

showing uniaxial bar stress ¢ equil

A and p as bar cross

Differential bar element,

(a)

Figure 3-6.

(b) Definition of

-section area and perimeter.

stress Tp.
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Table 3-1

Variables in the design of steel-concrete
interaction experiment

o Load History

Stress Level

Monotonic or Cyclic
Static or Dynamic
Uniaxial or Multiaxial

° Specimen Design

¢ Pullout

e Tension

® Structural Element
) Rebar Geometry

e Diameter

® Surface Finish

¢ Embedment Length

° Rebar Material

® Yield Stress

° Concrete Geometry
o Cover Dimensions
® Cross Sectional Shape
® Aggregate Size

() Concrete Properties
o f'c
) Auxiliary Reinforcement
e Stirrups
o Wire Cages
Some progress has been made in assessing sensitivity of bond

strength and slip to the 15 or so independent variables; the load
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- parameters will be discussed later and the specimen design has been
§§ discussed in the previous section.
- Ferguson et gl.,(94) Figure 3-7*, noted that for a constant
average bond stress, Tay? end slip increases almost linearly with
z rebar diameter. Since
'
b . . .P
av- Zwdl (3-2)
:i where P, d, L are bar end load, diameter and embedment length
- respectively, it is impossible to transform this result into a
:: statement on how Tav varies with d. It is reasonable, however, to
L expect some sensitivity since rebar diameter influences manu-
facturing-induced residual shrinkage stresses which in turn control
frictional contributions to bond stiffness.
3 It is demonstrably evident that a bond stress/bond slip
2 constitutive relationship depends on rebar surface conditions,
‘j Mains observed that plain bars have half the resistance to bar
Q pullout and/or bond failure as deformed bars while Edwards and
g Yannopoulos found plain bar bond strength to be 35-50 percent of
o that of deformed bars. Further Goto,(89) using three differcnt
‘? lug designs, showed that results are also sensitive to lug design.
;ﬁ Embedment length is another parameter with an obvious effect
v of bond strength. Here, for a pullout test, embedment is defined as
4 the length of rebar covered by concrete and for a tension test it is
k. half the length. Embedment also influences the bond stress distri-
a bution and the test specimen failure load, with short embedments
K resulting in pullout and long embedments producing concrete cracking
?; failures or bar yielding.

i *Tn Figure 3-7 compare solid curves as a group and dashed curves as a group.
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Figure 3—7. Average bond stress versus loaded end slip.
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R No research has been done on bond strength and bond stress

::*’; distribution sensitivity to rebar material properties. Rebar

:o: Young's modulus and Poisson's ratio vary little from bar to bar, so

{: the only remaining variable is rebar yield stress which can control

’z" specimen failure mode in that test specimens with low strength bars

‘é might fail in bar yield/fracture, whereas with high strength bars,

‘: they might fail by bar pullout.

~§ Concrete cover is a very important parameter in determining
: test specimen failure mode and load, and is defined to be the

W, minimum distance perpendicular from the rebar to a concrete free

: surface. Edwards and Yannopou]os(84) found that by increasing

" cover from 1.4 to 2.0 bar diameters, specimen pullout strength

’"-" increased 20 percent. They also noted that increased cover also
increased shrinkage stresses on the rebar and the ability of the
cover to resist longitudinal and transverse cracking. A similar
}‘F observation was made by Ferguson et _1_.(94) Tepfers(gz) found
v that for six different covers the bar load necessary to induce the

;.:::: first surface crack increased monotonically with bar cover.

;u'::: Using concrete prisms with a square cross section Mirza and

:‘:?, Houde(go) showed that cover controlled the distance between

) transverse cracks in a specimen, with smaller covers producing

}:'i; shorter inter-crack distances. They also noted that

x: ) bar end slip increases with bar cover (Figure 3-8)

;: ) restraint on the rebar increases with bar cover

d (Table 3-2)

' These statements appear contradictory but are easily

reconciled. First, bar end slip was measured at the ends of tension
:j specimens with the same length of concrete cover. Specimens with

: smaller cover experienced transverse cracking, and slip occurred at

f‘ these crack locations but was not taken into account. Thus the

$ smaller covers tended to move with the rebars while the larger

O covers experienced little or no <cracking and remained more

o monolithic. To explain the second statement note that for each

:?:g cover size, bar slip was computed using rebar lengths equal to the

'.j:':' intercrack distance for that cover.

.‘.',2
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Figure 3-8. Bar end load as a function of end slip for different covers
and concrete strengths ---- 3000 psi, 6000 psi.
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The effect of aggregate size and shape on bond strength and
distribution has never been investigated. Its possible importance
would arise from any influence aggregate surface asperities have on
the quality of the mechanical interlock between aggregate and rebar

lugs.
Table 3-2
Restraint on rebar slip increases with cover
(a) (b) Inter-
. crack
Specimen Ac Slip Elongation Restraint Distance
Size (in.2) 10 40y (0% in 0% inn) (inn
2 x 2 4 16.5 17.6 0.9 1.0
4 x 4 16 23.0 44.0 21.0 2.5
6 x6 36 33.0 70.5 37.5 4.0
8 x8 64 23.4 70.5 57.1 4.0

(a) Measured at 50 ksi bar end stress

(b) Computed with bar length equal inter-crack distance and with 50 ksi
bar stress, £ = 28.4 x 106 psi.

The most important plain concrete property is its simple

(91)

compression strength f'c. Untrauer and Henry in a series of

pullout tests found that average bond strength = was propor-

tional to f' , a result in agreement with Ui: findings of
Ferguson et gg,iga) Similar trends were reported by Perry and
Jundi.(96) (97) found that the bond stress
distribution was also sensitive to f'c; this will be discu?sgg
further in the next section. Finally, Mirza and Houde

believed that bond strength is in fact insensitive to concrete

strength; however, it is possible that the large scatter in their

Perry and Thompson

results precluded observation of a definite trend. |

Other variables that influence attainable bond stress levels
are less understood. Mains,(87) Mathey and watstein,(88)
.,(99) used stirrups and wire cages in their

Bertero et al
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1'2‘ specimens to increase resistance to longitudinal splitting. The
gﬁ S effect of these added reinforcements was to impose additional radial
ﬁa : constraints on the rebar and thus affect both the frictional and
Qs‘, mechanical interlock contributions to bond strength. However, no
EW#; attempt has been made to study this effect in detail.

i%ﬁz Finally, the fabrication process itself introduces significant
k&f‘ variations 1in bond strength. In particular, when concrete for
e eccentric pull specimens is cast with the rebar horizontal,
. attainable bond strength 1is sensitive to whether the rebar is
f‘$ towards the top or bottom of the form. Ferguson g;_.gl.,(85’94)
j‘%@ noted that because water and entrapped air tend to collect
B underneath top-cast bars such specimens have up to a 20 percent
s;f weaker bond strength than bottom-cast bars. Similarly, when pullout |
:": specimens were cast with short covers and with the rebar vertical,
ébj Edwards and Yannopou]os(84) observed that the bond was weaker when |
égd‘ the rebar was pulled downwards than when pulled upwards and the
_— difference was attributed to water and pores beneath the rebar lugs.
?'g Not all the variables listed in Table 3-1 would be present in
;;;3 a constitutive theory; load history parameters obviously would be
e while test specimen type would not be. The theory would relate bond
7i% stress to bond slip at each point along a rebar and would be applied
$§f to individual rebar-concrete mix combinations. A general theory
&Lt' that has lug design described explicitly through a set of parameters
ffﬁj is not anticipated. Instead, specimen tests would have to use the
o actual rebar type to which the theory would be applied. Rebar

embedment length would not be a constitutive parameter; rather its

T

effect would be predicted by the theory. Rebar yield would be a
parameter in the theory. Of the concrete geometry listed in Table
3-6, only cover dimensions might be in a constitutive theory, and

-

T

i

jﬁ; then, only if the prestressing effect caused by shrinkage during

ﬂs curing could not be accounted for analytically. Concrete compres-

] Py

*b{. sive strength would be a constitutive variable. Approaches for

‘e accommodating stirrups and wire cages into a constitutive theory are

i !

th not known at present and, of course, the theory would not account

L

kﬁk: for fabrication-induced anomalies in bond strength and stiffness.
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3.2.5 Bond Stress Distribution

The measurement of bond stress along an embedded rebar can only be
achieved by indirect means through computing the slope of the curve
of steel strain versus distance along the rebar. Darr(83) noted
that since bond stress is essentially the spatial derivative of a
measured quantity, its value is subject to more scatter than bar
load, bar end slip and bar strain. Additional scatter is introduced
through unevenness in bond arising from curing variations and
differences in bar surface conditions. However, general trends are
clear. .Figure 3-9 is typical of the results obtained and shows how
the bond stress distribution varies along a rebar in a pullout test
for three different levels of bar end load. For low levels of bar
load most of the bond stress is at the loaded end of the bar. As
the load increases the maximum bond stress increases and occurs
farther along the rebar, also complete debonding occurs at the
loaded end. Similar trends can be seen in the work of Mains,(87)

Figure 3-10.

From Figure 3-9 it is clear that maximum local bond stress is
a function of both external bar load and, less expectedly, distance
from the loaded end of the specimen. This latter observation has
been made by several authors; Bertero et gl.,(gg) Mains,(87)
100) (87) There are at least two

Nilson( and Perry and Thompson.

possible reasons for dependence on distance along the rebar:
® Near the loaded end of the specimen there is not so

much constraint from the concrete as would occur
deep inside the specimen.

) During curing, water and air pores might have
collected around 1lugs near the specimen ends
weakening the concrete.

(84) contend that maximum bond stress

Edwards and Yannopoulos
does not vary with distance along the rebar. However, these authors
intentionally set out to achieve a uniform bond distribution along
their rebar by using a short embedment length. The dependence of

maximum bond stress on cover length has an important consequence for
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specimen design. If a short embedment length is used, a lower
maximum bond stress will be measured than would be achieved in an
actual structure. Thus to obtain results of practical importance,
either a sufficiently 1long embedment 1length must be wused or
additional concrete must be added to the ends of the specimen, as
was done by DBrr,(83) Figure 3-11, to achieve a high level of
constraint about the rebar at the loaded end.

So far the discussion has been limited to rebars under tensile
stress. When the rebar is in compression locally high levels of
bond stress are achieved where the rebar enters the concrete
(Bertero gg_gl,(gg)).

3.2.6 Attainable levels of Bond Stress

In this section are gathered togethér a selection of the
values obtained for maximum bond stress under monotonic 1load.
Effects of cyclic loading and lateral constraint will be assessed in
the following sections. Because of the large number of experimental
variables involved, a wide range of bond strength values has been
found that is further complicated by the ways bond strength is
defined. Authors that do not use internally instrumented rebars
have defined bond stress as bar load divided by embedded bar surface
area. Obvious draw- backs to such definition are that computed
bond stress decreases as embedment length increases, since the bond
stress distribution that reacts the bar load is localized; if only a
short embedment length is used, low bond stresses are again obtained
because of the lack of concrete constraint. The correct way to
define bond stress was shown in Section 3.2.3.

For plain bars, typical values of average maximum bend

strength 7. are shown in Table 3-3 where it is seen that average

av
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. Table 3-3

} Bond strength for plain bars

Test

Strength Cover Embedment Test
) Author (s) (psi) (in.) (in.) Type
’ |
K Edwards and Yannopoulos (84) 522 1.0 1.5 pullout
" L]
5 Edwards and Yannopoulos (84) 638 1.4 1.5 pullout
! Mains (87) 460 2.0 21.0  eccentric

ey
i

bond strength increases with concrete cover and decreases with em-
bedment length. For monotonically loaded deformed bars without any
lateral constraint, a sample of measured bond strengths is given in

ap_ PN A

Table 3-4 and it is clear that bond strength is sensitive to experi-
mental details and, therefore, that either development of a theory
to predict bond strength or execution of the suite of experiments

needed to determine such a theory's constitutive parameters is a
i non-trivial exercise. It is also clear why no practical theory has
1 been developed to date; the data base for any postulated theory is
it most certainly inadequate.

¢ 3.2.7 Cyclic Loading Effects

In preceding sections bond stress and strength under monotonic
L loading was examined. In protective structures, concrete can also
be expected to experience some cyclic loading under certain cir-
cumstances. In this section the effect of cyclic loads on the
integrity of the bond between a single rebar and the surrounding
concrete is discussed. The presentation is divided into

) rebar loaded in tension only

q ° rebar loaded in alternating tension and compression.

(99) (82)

Bertero et al.,

Yannopoulos,(ggj- Ismail and Jirsa,(
(96)

Edwards and
101)

Bresler and RBertero,
98)

Morita and Kaku,(

-

and Perry and Jundi performed experiments to wunderstand how

s e .
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2 Table 3-4
v
e Average bond strength for deformed bars
e
et Bond Embedded Bar Test
;ﬁ&f Authors Strength Cover Length f'. Diameter Type
0'
iga' Edwards and Yannopoulos (84) 1116-1363 1.00 1.50 6293 0.63 Pullout
ol Edwards and Yannopoulos (84) 1407-1682 1.40 1.50 6293 0.63 Pullout
e Mirza and Houde (90) 655 5.50 8.00 4800 1.0 Tension
5'5 Mirza and Houde (90) 286 2.50 8.00 4120 1.0  Tension
Sy
! Perry and Jundi (96) 453  0.75 9.00 2200  0.73 Eccentric
%ﬁ Pullout
‘;i Perry and Jundi (96) 543 0.75 9.00 3360 0.73 Eccentric
R Pullout
.55 Perry and Jundi (96) 618 0.75 9.00 4030 0.73 Eccentric
v Pullout
I Perry and Jundi (96) 735 0.75 9.00 5060 0.73 Eccentric
%:r Pullout
s Tepfers (92) 461 0.47 1.97 3567 0.63 Pullout
ey Tepfers (92) 693 1.22 1.97 3567 0.63 Pullout
e Tepfers (92) 734 0.71 3.13 3567 1.00 Pullout
‘R Tepfers (92) 1088 1.89 3.13 3567 1.00 Pullout
;& . Untrauer and Henry (91) 1020-1250 6.00 6.00 4630 1.128 Pullout
‘s Untrauer and Henry (91) 1315-1600 6.00 6.00 4630 0.73  Pullout
t Untrauer and Henry (91) 1560 6.00 6.00 6410 1.128 Pullout
Untrauer and Henry (91) 1330 6.00 6.00 6410 0.73  Pullout
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cyclic loading in tension degrades the steel-concrete bond. The
principal qualitative conclusions were:
] The bond at the loaded end of the rebar slowly

degrades and the bond stress distribution migrates
inwards away from the loaded end.

(] After 10 to 30 cycles at the same maximum, tensile
bar stress, maximum bar end slip has not increased
significantly.

(] The bond stress-bar slip relationship 1is most
sensitive to the previous maximum bar load.

) During the unload portion of a load cycle there is
little slip recovery.

These conclusions are illustrated in the following figures.
In Figure 3-12, (Perry and Jundi(96)), are shown the bond stress
distributions for various load cycles. The test was a pullout and
the rebar had a 0.75-inch cover and a 9-inch embedment. In the
figure the load was applied at the left and the reason for the high
non-zero bond at the right is not understood. However, the slow
migration of the bond stress distribution away from the loaded end
can be seen.

The non-deleterious effect on bond stress levels of a small
number of load repetitions is shown in Figure 3-13 (Ismail and
Jirsa(98)) and has also been observed by Bresler and Bert-
ero,(sz) (82) and by Edwards and Yannopoulos.(gs) In
Figure 3-13, steel strain along a tension specimen is plotted for
various load cycle numbers. Since the slope of these curves is
proportional to local bond stress, it follows that when two curves
are close together, little change in bond stress has occurred. The
loading history for these curves is given in Table 3-5. In Figure
3-13, it is seen that the bond stress distribution appears primarily

Dorr

controlled by the maximum 1load experienced over all previous
cycles. For example, with specimen T20 the strains for cycles 7 and
22 at a bar end load of 20 ksi are essentially identical (and
similarly for cycles 6 and 12 at a bar end load of 40 ksi), while
cycles 5 and 7 have markedly different strain distributions because
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Figure 3-12. Bond stress distribution along rebar
for different load cycles.
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Figure 3-13. Strain distribution along rebar for different cycles and
and for the load histories in Table 2-10.
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Table 3-5

- Load histories corresponding to Figure 3-13

=ﬂﬁ Peak Stresses

5% Cycle
58S Specimens  No. Tension fs, ksi* Compression fé

20 0 for T20
0.4 f'c for TC20

e T20 1
1C20 6-
i 8-12 20
o 13-17 30
iy 18-19 10
R 20-21 20
X 22 Yield

t
ot K21
o
o

-

oA

‘?‘.

o

59

-
-

T
—

T40 and 1-5 40 0 for T40
TCA0 6-10 20 0.45 f'c for TC40
11 Yield

-.c‘

C

*1 ksi = 70.3 kg/cme
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i for cycles 6 and 7 (see Table 3-5) the maximum bar stress was raised
Ef to 40 ksi. An analogous behavior can be seen when comparing cycles
k% 1 and 11 of specimen T40 at a maximum bar stress of 40 ksi.
uf Sensitivity {g;;naximum bar stress has also been observed by Bresler
3 and Bertero.

% . (95)

g: Figure 3-14 (Edwards and Yannopoulos ) shows that there
g is little slip recovery when a test specimen is unloaded. The
* authors subjected their thin pullout specimens to nine identical
K load-unload cycles. A large amount of slip accumulated during the
b first load cycle but subsequently there was minimal recovery.
:: Further, succeeding cycles did little to change the amount of slip,
I which agrees with remarks made in the preceding paragraph. That it
g} takes increasing bar stress to increase slip can be seen in Figure
Q{ 3-15 (Morita and Kaku(IOI)), who also used a very short embedment
?g length. Again, there is little recovery during unloading.

g

Morita and Kaku(IOI) also studied cyclic loading involving
stress reversals. In Figure 3-16 some of their results are shown
schematically. In Figure 3-16a the specimen was cycled between
fixed slip limits and after a few cycles the stress-strain curve

stabilized and became that shown in Figure 3-17. The horizontal
portions of the curve, parts 0A and CD, can be thought of as Coulomb
friction corresponding to the bar 1lugs having ground out a small
region of the concrete adjacent to the bar. Portions AB and DE
- correspond to the 1lugs contacting concrete that has not been
l severely deformed by the bar Tugs. Unloading branches BC and EO are

L SN

. &

"a characterized by an almost total lack of strain recovery. This is
32 attributed to the concrete debris locking around the bar 1lugs
i inhibiting strain recovery in the bar. It is only after the stress
f* has reversed that strain recovery is possible,

3; Figure 3-16b shows totally reversed cyclic bond stress versus
k)

slip for increasing levels of stress. The presence of Coulomb
I friction in the strain unloading branches and the small amount of
'i strain recovery in the stress unloading branches can be clearly seen.
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v 3.2.8 Multiaxial Loading

ﬁ The least understood aspect of this subject is the effect of
':; multiaxial loading on bond stress. Several researchers (Bertero et
& gl,,(sa) Mains(87) and Mathey and Natstein(as)) have
o matter-of-factly used stirrups and wire cages to suppress the
3‘ longitudinal cracking failure mode. However, since these
% reinforcements were buried inside specimens and were not
§ strain-gaged, the amount of constraint provided by them is unknown.
+ However, it is clear that if cracking that would otherwise have

& taken place was prevented then additional pressure was exerted on
k the rebar and increased bond strength was obtained.

9

W To date, only two studies, Untrauer and Henry(gl) and

% DBrr,(83) have sought to systematically determine the effect of

N

& external, controlled lateral pressure on bond strength. Dorr used

3 tension specimens with strain-gaged rebars and found that near the

3 ends of his specimens he could double his bond stress and greatly
reduce slip by applying a lateral pressure of approximately 2175

3 psi. In their study Untrauer and Henry used a puliout specimen with

3‘ square cross section and applied a lateral pressure fn to only two

ge sides through hydraulic rams. Figure 3-18 shows average bond stress

- versus end slip curves for zero and 1500 psi lateral pressures and

5: it can be seen that attainable bond stress was doubled in the latter

£

k‘ case to over 2 ksi and that controlled slip was also doubled.

b Figure 3-19 shows bond stress increasing linearly with f_ for

) various fixed slip levels and two different bar sizes.

b

10.

i 3.2.9 Issues

[}

i In the preceding sections a detailed discussion of the state

" of knowledge on the bond between steel and concrete has been given

)

# and it can be concluded that:

b

Y, ° Currently there is no universally accepted technique

o for  obtaining  experimental data on  the

- steel-concrete bond.

f5 o No technique exists for measuring slip along a rebar

5 embedded in concrete.
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0, (b) fy = 1500 psi.

Slip at Loaded-end, inches x 10-2
fn

showing effect of external lateral pressure

Average bond stress as a function of end slip
fn (a)
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Figure 3-18.
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0%
e
e ° The large number of experimental variables has
.|=;§’ resulted in a very diverse data base; consequently,
W a considerable effort is necessary in order to
Lo develop a reliable data base from which validation
e of a constitutive model may be carried out.
R ] Bond stress and slip depend on
;"0‘ e bar and concrete constitutive properties
Sl
«:‘2::: o bar lug design
e confining stresses due to applied external
) pressures of stirrups.
i
:?’.’: Other steel-concrete interaction items that pertain to con-
'!gu“ tainment structures but were not discussed because of a complete
_ lack of experimental data, are:
o,
N s . .
() Sensitivity of bond stress and slip *to strain rate
. § effects.
L)
ot .
R ) Interaction between rebars at right angles to each
et other.
».;}'
o,
{;::,} ° Scatter instrinsic to reinforced concrete material
) properties.
i
R1
J 3.3 AGGREGATE INTERLOCK, DOWEL ACTION
!;;;‘ As noted previously (see Section 1), the dowel and aggregate
&:;: interlock problems are not treated in the analytical development
)
ﬁ::::: reported herein. Nevertheless, since the establishment of a sound
’ data base is a necessary prerequisite to further model development,
2 it is deemed appropriate to review such subjects from a test data
 : standpoint. Consequently, in this subsection the pertinent test
‘k data concerning aggregate interlock and dowel action is reviewed.
_  The discussion, all of which refers to shear transfer across cracks
R in reinforced concrete, partially follows the recent review by
-::» Leombruni, ﬁﬂ.(IOZ)
[ »
e 3.3.1 Aggregate Interlock
‘;f" The aggregate interlock problem refers to interface shear
:i transfer (IST) across crack planes, and to joint dilatancy (increase
A
et
a0
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v in crack width) due to relative displacement parallel to the crack.
éﬂ The manner in which IST takes place has a major impact on the
bt effective ‘'shear modulus' of a reinforced concrete specimen. An
£ understanding of the dilantancy problem, on the other hand, is
. necessary in order to properly determine the manner in which the
% reinforcing steel is loaded in the presence of shear deformation.

W

& The tests performed by Fenwick,(103’104) Figure 3-20, are
" perhaps typical of the aggregate interlock or IST experiments. Here
W a predefined crack is subjected to relative slip while the crack
i opening is maintained essentially constant. The effects of crack
;% width and concrete strength on the load-slip behavior were studied
; for crack widths ranging from 0.0025 to 0.0150 inches and concrete
: strengths from 2700 to 8120 psi. Figure 3-21 illustrates typical
; data for a concrete with fé = 4810 psi. There appears to be a
3 linear relation between shear stress (agerage) and interface slip
. until additional diagonal and flexural cracks appeared in the test
W blocks. As can be observed, the slopes of the shear stress versus
% slip curves decrease with increasing crack width. It was also found
g‘ that increasing concrete strength increased the shear stress versus
o slip slope for a given crack width, but the effect of strength

increase on stiffness was not as pronounced as that of crack width.
. A decrease in slope occurred with the onset of additional cracking.

o Loeber(los)

performed similar IST tests, but on specimens
with a larger shear area (A = 33.5 in% for Loeber, A = 12.25 in?
for Fenwick), Figure 3-22. Reinforcing ties were placed in the
specimens to limit additional cracking as shear was applied. The
concrete strength used was a nominal 5000 psi and the crack width
ranged from 0.005 to 0.020 inches. Representational results from

W, Loeber's tests are shown in Figure 3-23. Loeber's tests show

R

)

% greater slopes and capacity than do those of Fenwick, perheps
» because of the added reinforcing ties which limited additional
L

,' cracking. In both tests, however, the slope of the (average) shear
1Q stress versus relative slip is a strong function of the crack width
; with a decrease observed where the crack width was increased. Based
l

h
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b on his tests, Loeber also indicated that the size and type of
1:? aggregate do not have a large influence on IST.
g;gé Houde and Mirza(106’107) conducted an experimental program
Y using test specimens similar to Fenwick. The crack width range for
} h these tests was 0.005 to 0.020 inches. Typical results are shown in
§$Iz Figure 3-24. A new feature of this test data is an initial "free
:;-\ slip" observed at the onset of loading for crack widths greater than
N 0.01 inches. This slip (= 0.0015 inches) is attributed to relative
o free displacement that occurs before asperities on either side of
gﬁ& the crack surface come into contact. After the initial free slip,
'3 N the shear-slip response is linear until additional cracks occur in
§iﬂ the test blocks. The main parameters influencing IST were cited as
- the crack width and the concrete strength.
i i White and (108) i i 'rigid'
e ! nd Holly studied IST using two 'rigid' blocks
alg with a preset crack between them, Figure 3-25. The external
' restraining bars* shown provided a constant ‘stiffness' normal to
e the crack; this is in contrast to the previous tests which were
}té conducted at constant crack widths. The shear loading was applied
e cyclically in a range of 120 to 160 psi. Typical response for
“}‘ (average) shear stress as a function of shear slip, average crack
QV‘. width, and increase in restraining bar force are shown in Figure
¥;§ 3-26. Within the stress range of 120 psi, relatively small slips
ghﬁ' are produced during the first cycle of loading, and little increase

in slip occurs even after 25 cycles of loading. After 25 cycles,
the shear stress is increased monotonically to approximately 400
psi. Appreciable increase in slip, further crack opening and
corresponding increase in bar forces were observed for this
monotonic increase. It is noted that these specimens exhibited a
ductile behavior which was not observed in the specimens tested with
constant crack widths.

*These bars were intended to represent the restraining forces
provided by embedded bars in actual reinforced concrete. The
technique allows one to separate IST and dowel effects.
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Figure 3-25. Test specimen configuration from work performed
by White and Holley.
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& A’ study using experimental specimens similar to those used by
:; White and Ho]]y(loa) was conducted by Laib]e.(log) Here thirty
3%: direct shear specimens with a shear area of 150 and 300 in2 were
:'; used in a study of IST. The parameters addressed were specimen
o geometry, aggregate size and quality, concrete strength, magnitude
g:' of cyclic shear stress, effect of initial crack width, effect of

degree of reinforcing restraint across the crack (normal stiffness),
and the age of concrete. The measured quantities were horizontal

slip along the crack, increase in crack width, and increase in

-~
-

restraining steel force. The cyclic shear stress applied ranged

-?ﬁ from 100 to 270 psi, but the majority of the tests were cycled at a
‘jﬁ shear stress level of 180 psi. Typical first and 15th cycle load-
(f' slip displacement curves are illustrated in Figure 3-27. It can be
-2 observed that, although the first level phase is nearly linear,
’;3 appreciable residual displacement results upon unloading. Subsequ-
:;j ent loading cycles exhibit an initial small slope followed by a
0% sudden increase in slope. The unloading stages show higher stiff-
4 ness than the loading. The initial crack width range in these tests
:y was from 0.01 to 0.03 inches. In general, the increase in crack
;% width as the shear force was applied was small in comparison to the
T initially prescribed crack width. The authors note that the bar
FJ forces induced by asperity overriding from the applied shear
Pt stresses were a small percentage of the force required to cause
é.l yielding of the bars (This information, however, may be very mis-

-
N

leading since the bar stress distribution in an actual reinforced
concrete specimen depends strongly on the degree of debonding that
has taken place (debonded length)).
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3.3.2 DOWEL ACTION, COMBINED IST AND DOWEL ACTION

2

Tt
:z. Jimenez-Perez, et 'gl.(llo’lll) conducted an experimental
\
:$ study of IST, with and without dowel action. The test setup used is
", .
sd shown in Figure 3-28. Eight specimens were used for the combined
1
= IST and dowel mechanism and five specimens for the dowel action
;k alone. Embedded reinforcing bars were used for the study. Initial
vﬁﬁ tensile stresses were applied to the bars to initiate cracking at a
‘:.:
2
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Figure 3-28. Block- type test specimens performed by Jimenez.
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predetermined plane (see Figure 3-28). The axial stress was then
increased in increments to a maximum of 40 psi (rebar stress). In
each stage measurements of the crack width opening and bar stresses
were taken. The axial stress was then adjusted to accommodate a
desired initial crack width, Shear loading was subsequently applied.

From the combined IST and dowel tests the following behavior
was observed: the increase in crack width was insignificant within
a range of shear stress up to 200 psi. A noticeable increase
occurred only when failure was imminent. The increase in axial
stress from the application of shear was normally less than 10
percent of the ultimate axial bar capacity. Figure 3-29 depicts
typical load-slip behavior for the combined action tests. Cycle 1
and Cycle 15 shear stress versus shear slip response curves at
different stress levels are shown. From the magnitude of the slips
observed at these stress levels, it can be inferred that the
combined mechanism with large diameter (No. 14) embedded bars shows
slips less than half those observed in IST tests performed by
Laible.(log) Also, though the load-slip behavior of the combined
action specimens is similar to the displacement curves produced by
Laible's test, the residual slips were not as pronounced.

Specimens reinforced with No. 9 and No. 14 bars were used to
study the dowel action mechanism alone. For this purpose the crack
surface is replaced by a smooth lubricated surface. A typical shear
stress versus relative displacement response for dowel action is
illustrated in Figure 3-30. It is observed that, in comparison to
the combined mechanism, much larger shear slips are necessary to
develop shear resistance through dowel action. Note that the
specimen without initial tensile stress exhibits a stiffer behavior
than the specimen stressed initially at 30 ksi. It was concluded
that individual bar dowel ‘'stiffness' increases with bar size, but
for larger bars where concrete deterioriation may be more
significant around the bar, the 'stiffness' was at time lower than
the smaller bars. Tensile stress in the bars has a deterioriating
effect on the dowel stiffness since it causes more localized bond
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failure. Most specimens used to assess dowel action failed by
concrete splitting.

Based upon the above tests, the authors have attempted to
determine the relative amounts of shear taken by each mechanism.
Using compatibility arguments and the 1load slip behavior of the
combined mechanisms versus dowel action alone, it was concluded
that, for the specimens considered, interface shear transfer assumes
65-75 percent of the total applied shear while the dowel action is
responsible for 25-35 percent of the applied shear.

Another test program worthy of mention here is due to

Du]uscka,(llz)

who conducted a test program on dowel action with a
goal to establish theoretical load-deformation relations for cases
where steel is oblique as well as normal to a crack surface. The
test setup for these experiments is shown in Figure 3-31. To
simulate cracks, two layers of 0.0078-in-thick sheet brass, which
was connected in the middle by a skewed steel stirrup, were embedded
in the test specimens. During testing, relative slip along the
simulated crack and opening of the crack perpendicular to the
direction of the load were recorded. Due to the sheet brass,
aggregate interlock was not a factor in this study, i.e., dowel
action alone was investigated.

Experimental results for the failure load in the bar were
found to correlate well with the following relation:

T 2 1 e /2 (3-3)
= p$"yo_n siny ( + ) - ] 3-3
f y [ 3;20 n S‘inzy
y
where
Tf = Failure load of dowel shear
) = Bar size
= Angle of stirrups in degrees
oy = Yield stress of steel
o = Cube strength of concrete
n = Coefficient of local compression of concrete
133
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Y = Constant

o = 1- N2/N§

N = Axial tensile force in bar

Ny = Axial force inducing yield in pure tension.

Duluscka concluded that, from the test results, a reasonable
emperical fit of the slip versus dowel shear load was

_ 1/2
- B v (5) 5.6
c f
where

A = Constant

T = Dowel shear load

Tf = Failure load of dowel shear computed from Equation

(3-1)

Equation (3-2) was plotted as a function of T and a for two
values of & = 10° and 40" respectively, as shown in Figure 3-32.
The results indicate that an increase in the angle & results in a
decrease of the dowel shear force T and an increase in the bar's
normal force N. Also, an increase in the concrete strength o
results in an increase of dowel shear capacity Tf.

C

3.3.3 Issues

Information on IST, dowel action, and combined IST and dowel
action represents a critical link in the constitutive model con-
struction chain. The preceding information constitutes a repre-
sentative cross-section of the available data on these subjects. An
evaluation of this work leads us to the conclusion that additional
testing is necessary in order to adequately define the mechanics of
the ST, dowel, and combined IST and dowel problems. Such testing
should be conducted, in contrast to most previous studies, under

displacement control wusing a closed 1loon servo-controlled test
system,
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SECTION 4

;‘s:: PREVIOUS CONSTITUTIVE MODELS: PLAIN CONCRETE

(8 | .

'1’;:: In this section, previous work on constitutive relations for
;‘te-’{' plain concrete is reviewed for background purposes. The discussion
e is partitioned into (1) uniaxial relations (subsection 4.1), (2)
j‘: biaxial relations (subsection 4.2) and (3) multiaxial relations
.1:,3:{ (subsection 4.3),

gL

il 4.1  UNIAXIAL CONSTITUTIVE MODELS

: The usual constitutive assumption for concrete in uniaxial
ﬁ: tension is linear elasticity, with complete failure occurring when
c" the stress reaches ft" For monotonic compressive response many
'.;I'Z nonlinear stress-strain laws have been postulated. Typically they
% were designed for use in reinforced concrete beam design and are of
the form

Lo o = f(e) (4-1)
o

Ai-}j' Eq. 4-1 is not immediately suitable for nonlinear finite ele-
j:‘-f" ment analysis where an incremental stress-strain relation is
J needed. Further the representations do not admit obvious general-
e jzation to multiaxial stress states. The principal usefulness of
EE: equations of the form of Eq. 4-1 is as hardening functions for use
"".} in multiaxial constitutive models,

WX,

,;. Popovics(113) summarized equations of the form Eq. 4-1 and
24 they are given below:

"'i

1 c= Ae" . (4-2)

Ee [1+ (3E/E - 2) (e/e,) *

= e
o?'
S B L !
Q
[}

’ 2 (4-3)

::::l ' (1 - ZEO/E) \C/Eo) ] ’
D."
Eald
“ Ee
o 0 =

) 4 ! 4-4
B 1+ (E/E, - 2) (e/eg) * (eley) (4-4)
'
¥
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- o= Ee (1 - e/2e0) . (4-5)
K
K o= Be (1+ Csn-l) , (4-6)
B
!“l
o < __Ee_z (4-7)
' ’
ol 1+ (€/€0)
7,
o
X oo —E (2-8)

D + (e/eo)
&
éz o= Eceexp (- e/eo) . (4-9)
.1
!
) o= Ecexp[ - (Ee - 2)"F] , (4-10)
"'-'
o In these equations Eo and €, are the secant modulus and
o strain at ¢ = fc' and E is the initial tangent modulus. Para-
! meters A, B, C, D, F, m and n are constants. Eg. 4-2 does not model
\ softening. Equations 4-3 and 4-4 would model softening if cubic
.:3. terms were added. Equations 4-5 and 4-7 are special cases of Egs.
n‘\-' 4-3 and 4-4 with E/E0 = 2. Equations 4-5, 4-6, 4-7 and 4-9 are
i less flexible than the others because they predict a fixed value for
,‘_.) E/Eo when in reality the ratio can range anywhere from 1.3 to 4.
\
’,:.‘ Equation 4-4 was due to Saenz(114) and was used by Darwin and
;' Pecknold in the development of their biaxial theory of cyclic
iy response which is discussed in the next section.
e Additional formulae have been postulated by Kriz and
";: Leel115) 4ng by Popovics(nG).
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3 4.2 BIAXIAL CONSTITUTIVE MODELS

¥5 In this section consititutive models developed specifically to
22 describe the biaxial response of plain concrete are discussed.
i Three-dimensional theories which, of course, are based in part on
& biaxial data and can describe plain concrete biaxial response are
f? reviewed in Section 4-3. Multiaxial theories of plain concrete
@ response have only appeared in the last ten years and are mainly
A generalizations of elasticity and plasticity. In the presentation
. below it is convenient to divide the theories into three categories.
% 4.2.1 Nonlinear Elasticity Models

3: The first biaxial constitutive theory developed by Kupfer and
5: Gerstle(117) was in matrix form,

3

}? g=Mc , o = (o0 ays Tey) s el - (es &ys gy)  (4-11)
- where EQ], a matrix of secant moduli, was itself a function of
f: stress and strain measures. The constitutive model assumed concrete
; always behaved isotropically thus precluding oriented damage arising
- from microcracking. More importantly, while the model did replicate
~ monotonic loading results for biaxial compression and compression-
b tension, it was unable to adequately simulate any cyclic stress-
> strain response since the theory predicted that unloading occurred
1z along the loading path. Consequently, the theory predicted neither
% energy dissipation nor residual anelastic strain during unloading.
‘: Thus the theory, when specialized to uniaxial cyclic response'Was
:: totally inadequate. Subsequently, Murray(lla) corrected the
oy definition of tangent moduli given by Kupfer and Gerstle but did not
: address any of the theory's shortcomings.

3 Nilson, Slate. and their co-workers(llg’lzo’IZI) developed a
) nonlinear elasticity theory based on a generalization of Saenz's
_' representation for concrete uniaxial response. The authors first

considered a single component of stress, 9y for biaxial compres-

: sion and compression-tension and showed that

\
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o o, = f(ax, ex) € b Oy = oy/ox (4-12)
o
ef modeled available data well, where f was a judiciously chosen func-
:" tion and e, was the strain component corresponding to e Para-
)
ﬂd meter o was used to account for biaxiality effects.
) Next the authors attempted to introduce stress induced aniso-
“§ tropy by postulating
w a=[0]= (4-13)
‘t- where [D] was a material property matrix with form appropriate to an
Ey orthotropic material:
.
L
oy
!: a b 0
[D] = b c o (4—14)
3 0 0 d
%
and parameters a, b, c, d were functions of €1 €y and a -
Since the constitutive equation expressed total stress in terms of
fi total strain, parameters a, b, ¢ and d had the character of secant
K-y moduli. However, in their evaluation the authors expressed them in
?“ terms of variables that were tangent modulus-like in nature.
’1 In the present notation a typical tangent modulus was defined
'x to be df(ax,ex)/dex. But in reality the wvalue af(ax,
' ex)/Bex was used; a, Wwas held constant even though it was a
;j function of stress. Parameter d was determined using an ad hoc
i assumption that resulted in dropping an undesired term. Further,
) the parameters were defined in terms of strain components in such a
? 4
?% way as to be sensitive to coordinate axis orientation.
= It is not clear from the authors' presentation what was in-
o tended when unloading took place. Anisotropy was introduced to
'fi account for stress induced oriented microcracking, but it appears
‘ that on unloading to zero stress the physically irreversible micro-
cracking would disappear from the model and on reloading the mate-
3 rial would behave as though it were virgin.
L
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AN Neither of the nonlinear elastic models had criteria for
§§, determining when either crushing or cracking failure of concrete had
{éL occurred. Also, the models were not used to simulate structural
x:' response and so no evidence is available to establish model predic-
f', tive capabilities. However, because the models are nonlinear
fQ" elastic and thus fully reversible, while concrete is a microcracking
yﬁ\; material and thus experiences irreversible phenomena, it is
concluded that these models are of limited practical interest and
7;‘ are not suitable for the prediction of the response of concrete
3f. structures to general classes of loading.
f_:;::, 4.2.2 Plasticity Models
": Several authors have developed plasticity theories for simulating
%if concrete biaxial behavior. In small strain, small displacement
‘QEJ plasticity total strain is assumed to have the additive decom-
e position,
X i
R g=g8t+el (4-15)
R
éﬁf where E? and 5? are the elastic and plastic strain contributions
2 respectively. The elastic strains are governed by the usual rules
?r of elasticity. Plastic strains start to occur when the stress state
R 3. o at a point in a structure is sufficiently high that it satisfies
i f(a,a) =0 . (4-16)
&F; »» The function f is called the yield function and is assumed to
£a be a material property. The vector a is a set of material para-
*2 meters that characterize the amount of plasticity experienced. As
'4§ the stresses increase beyond initial yield g changes and ¢ is con-
A%E strained to satisfy Eq. 4-16.
3t : When plotted in stress space the yield function defines a
215 yield surface. A material is perfectly plastic if the a is constant
Ballad in which case the yield surface has constant position, shape and
{;: size, otherwise the material is work hardening.
%
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P is divided into a series of steps or increments aP",

In metals plasticity the failure curve for biaxial loading is
an ellipse centered at 9 = 0, = 0 with major and minor axes
along 91 = 9y and o = -9, respectively, Clearly the fail-
ure surface for concrete differs markedly from an ellipse. There-
fore the plasticity theories of metals cannot be applied to concrete
without some modification. In particular concrete failure, unlike
metals failure, (1) depends on the level of hydrostatic pressure and
(2) is different in compression and tension. Plasticity theories
are nonlinear and the constitutive law for the plastic strain EP
is incremental. A plastic material is said to satisfy normality and

have an associated flow rule if an increment in plastic strain is

determined by

L L (4-17)

where f is the yield function and A a deformation dependent para-
meter. Geometrically Eq. 4-17 implies that ép has direction
parallel to the normal to the yield surface Eq. 4-16 at the current
level of stress. If ép is not determined by an equation of the
form Eq. 4-17 then the incremental curve is a non-associated flow
rule.

When plasticity models are employed in finite element
analyses, the analyses are performed incrementally. The total load
K, x = 1,2,
.., and the 1load increments applied successively. At the
beginning of an increment existing stresses and strains are known
and the objective is to compute increments ag, ag, qu. Ay in
stress, strain, plastic strain and displacement corresponding to
load increment qgk . During a load increment the structure is
assumed to behave linearly with the plastic strain increment given
by Aep = epAt).

Perfect plasticity models. Perfect plasticity models have
been proposed by Hand, Pecknold and Schnobrich(lzz) and by Lin and

Scordelis(123). These models assumed concrete to be bilinearly
162
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. and linearly elastic, respectively, until stresses reached the bi-
f : axial failure envelope, i.e., no irreversible damage occurred to the
E“} concrete until the failure surface was reached. For compression-
:;Lj tension and tension-tension concrete was assumed to experience ten-
¢ sile cracking failure when the stress reached the failure surface.
ﬁg? Cracking failure was simulated by setting to zero the tensile stress
ggg‘ and stiffness parallel to the maximum tensile stress.

gﬁﬁ In the compression-compression quadrant of biaxial stress
. space, response subsequent to reaching the failure surface was
‘%35 assumed perfectly plastic and finally crushing failure occurred
) i\ according to a crushing strain criterion. Hand, et al., used the
Sﬁ;- failure surface obtained experimentally by Kupfer, Hilsdorf and
(gl Rusch while Lin and Scordelis employed the von Mises yield surface
‘zlg of classical metals plasticity. The authors incorporated their
| $§ models into nonlinear finite element codes and for several different
E;i‘ monotonic loading analyses of plate and shell structures obtained

. tolerable accuracy for overall load-deflection results.

ggﬁ The philosophy of the perfect plasticity models was totally
fﬁ{ﬁ different from that used in the nonlinearly elastic models. In the
“Q: Jatter, care was taken to replicate the biaxial stress-strain
Fi response up to failure while in the present models, attention was
jﬁs' focused on response after reaching the failure surface, and from the
f . results of the perfect plasticity models it appears that satisfac-
%g': tory simulation of concrete performance degradation mechanisms is a

prerequisite to adequately predicting response under severe

§‘§ loading. Hand et al., and Lin and Scordelis did not use their
E models to predict structural failure loads, and did not build into

their models any ability to simulate strain softening (a further

iy

.o performance degradation mode) and cyclic response. Finally the
égi models could be expected to predict stresses and strains poorly
gﬁ% because no attempt was made to incorporate stress-strain data into
()
h%' the models.
P Three promising models of plain concrete biaxial response
;bkh based on work hardening concepts were developed by Buyukoz-
3+
&52 turk,(lza) chen(125-129) 44 Murray.(130'133)
¢ ."
s 163
A

fgf 0o

S P e S It IR SN LT, AT I 3G B N BT AT R A , TR P DL CE A TR P MRS L AR
T A S T R SR S il -2 P Ll Do e e (W??“Rﬁ?"dtibbbdc
%S .g?‘ ARy ,l‘r? AR .,l 2% YA ‘5 ity 2% )% n'.' !.u LN, o ot 2 W S 1 }'.'l-. N X ‘. “'." n {4 g p. ChL AN "’f‘ LSLA0H




Aol d - Il e

Work Hardening Theory of Buyukozturk. The theory of Buyukoz-

turk was the simplest of the work hardening approaches. In the com-
pression-compression quadrant of biaxial principal stress space the
failure surface was represented by the generalized Mohr-Coulomb

relationship
30, + £11 + 1275 = (£)%)9 (4-18)
2 ¢ ) R N o
where I1 = o * oys and J2 was the second invariant of the

deviatoric stress tensor sij:

1 1
o= 789555 0 S5 = %53 %k Sij -
In the compression-tension quadrants the failure surface was
straight lines drawn between the uniaxial tensile and compression
strengths f% and fé while in the tension-tension quadrant
failure occurred when the maximum tensile stress reached f%.

Buyukozturk assumed that concrete response was linearly elas-
tic up to failure for stresses in the tension-tension quadrant and
applied plasticity only to the remaining gquadrants. The initial
yield surface, which was taken to be Egq. 4-18 with fé replaced by
fé/3, was used in the compression-tension quadrants as well as the
compression-compression quadrant, Thus the plasticity part of the
Buyukozturk theory replaced Eq. 4-16 with

f(g,0) = 0 (4-19)

where initial yield and ultimate failure corresponded to o = fé/3
and fé respectively. An associated flow rule was employed and the
variation of o with plastic strain was assumed derivable from uni-
axial, compressive stress-strain information alone.

Buyukozturk noted that his theory predicted greater strains
for a given level of stress than was found experimentally. He
attributed this to the inability of his theory to account for sen-
sitivity of the stress-plastic strain response to the ratio of
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- principal stresses. In his theory only a single principal stress

sa‘ ratio was used to define theory parameters.

E:%s: It is not clear from the author's discussion how he modeled

path the response of concrete once the stress state reached the failure

Qrv surface. Two failure types were identified - tensile cracking and

ﬁs’ compressive crushing. Tensile failure occurred whenever a tensile

%k principal stress reached the failure surface. Subsequent to a ten-

%ﬁ' sile failure, the material was assumed to have zero tensile stiff-
ness in the failed direction. However, it is not stated that the

}r; tensile stresses that existed at failure were subsequently set to

\3 zero.

E:i Crushing failure was assumed to occur when a compressive prin-

cipal stress reached the failure surface. Based on existing uni-
axial data, concrete behavior after the stress reaches the failure
. surface should involve progressive load shedding followed by a final
complete loss of stiffness and stress. No indication is given of

how Buyukozturk simulated crushing.

R

,s: Only analyses of monotonically loaded structures were per- i
) i
ﬁ% formed using the above theory. The global response of the struc-

Rt tures were only mildly nonlinear and, where experimental data

;g existed, predicted failure load was seven percent Tless than the

:ﬁ} actual failure load.

k?: Work Hardening Theory of Chen and Chen. Chen in a series of

f' papers(125'129) developed an alternative work hardening theory

4 where initial yield and final failure surfaces were of the form

<5

53 b -t

SR flo,a,B,v,1) = T (611/3)) -1 =0 (4-20)

%

‘ where

2

% 0 for compression-compression

¥ . .

W ~-1/6 otherwise.

) ‘l
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Parameters a and 8 were material constants with one pair of
values for compression-compression and another pair for other stress
states. Initial yield, subsequent yield and final failure surfaces
are shown in Figure 4-1 where it can be seen that the surfaces have
discontinuous normals along the simple compression directions.

Parameter T measured the amount of work-hardening and hence
the size of the yield surface for stress states between the initial
yield and final failure surfaces. [t was assumed that

TZ = g(ep) . P = Z; Ake?j Akegj (4-21)
where ¢P was the equivalent plastic strain and the plastic strain
increments Akeij were determined by the associated flow rule Eq.
4-17 for each step k of the incremental analysis. Chen and
Chen,(lzs’ paralleling the later work of Buyukozturk, could not
find a unique form for the function g from experimental data and so
used an averaging process. They took the biaxial data of Kupfer,
Hilsdorf and Risch3®) and for each stress ratio o;/o, com-
puted f from the stress data and e? from the corresponding strain
data, resulting in two families of curves, Figure 4-2. The authors
then averaged the two sets of data to define g as two functions,
Figure 4-3, one function being used for biaxial compression, the

other for compression-tension. g

The Chen and Chen theory was only applied to the simulation of

plain concrete specimen responses.(lze'lzs)

In these analyses
concrete at a point failed when the stress reached the failure sur-
face. Post failure response was modeled by maintaining the stresses
that existed at failure and permittin? no stress increase. With
this post failure model Chen and Chen 127) simulated the concrete
cylinder splitting test and predicted a tensile failure strength of
concrete to be only seven percent greater than that given by the

ASTM formula.
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Figure 4-1. Initial and subsequent yield surfaces and
failure surface proposed by Chen and Chen.
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Figure 4-3. Averaged equivalent stress versus equivalent strain curves.
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(129) incorporated a two-part failure

More recently Chen and Suzuki
criterion into the model. Failure was assumed to occur if either

the stress satisfied

flo,a,8,v, Ty) =0 (4-22)

or the strain reached the strain envelope shown in Figure 4-25. The
first criterion implied that the stress lie on the usual biaxial
failure surface and it is not clear under what circumstances the
strain failure criterion would be satisfied before the stress
criterion. Two fracture types -- tensile cracking and compressive
crushing -- were defined with crushing occurring only for biaxial
compression states. When cracking occurred tensile stiffness and
stress parallel to the maximum tensile principal stress were
immediately set to zero thus simulating the presence of a crack.
Compressive stiffness perpendicular to the crack as well as stiff-
ness and stress parallel to the crack were unaffected. The
possibility of subsequent additional cracking was also accounted
for. When crushing occurred all stress and stiffness were
imnediately set to =zero simulating complete loss of any load
carrying capability.

Using the new failure criterion Chen and Suzuki analyzed the
cylinder splitting problem and predicted a dramatic 48 percent
decrease in strength relative to the previous result. Although the
previous result had been reasonably accurate the authors gave no
indication that they thought the new results were in error. How-
ever, it is possible that the new failure model was physically and
numerically too severe especially for crushing failure. It is
reasonable to assume that once peak stresses are achieved at a
point, strain softening occurs resulting in a gradual shedding of
stresses and reduction of stiffness rather than the immediate total
shedding implied by the model. In a nonlinear finite element
analysis stresses are accumulated over several loads increments so
that the computer code can follow growing areas of material non-
linearity. A sudden shedding of stress cannot be accurately
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simulated in one 1load increment. Thus spurious overloading of
neighboring finite elements results and an unrealistically Tow
fracture load predicted. The correct way to simulate concrete
crushing failure is to reduce the loads in the failed region over
several load increments.

The biaxial constitutive theory developed by Chen and co-
vworkers has not been applied to reinforced concrete structures or to
the modeling of cyclic effects. Currently, the post-peak failure
model appears to be too severe. Thus usefulness of the theory lies
in predicting the stress-strain response of biaxially loaded plain
concrete structures for cases where significant material nonlinear-
ities are present but complete failure is not anticipated.

Additionally it is undesirable to have a yield surface with a
discontinuous normal along the uniaxial compression directions since
it complicates the fitting of an associated flow rule to uniaxial
data.

Work Hardening Theory of Murray et al. The novel feature of
the theory developed by Murray et gl:,(130)

was the definition of

three hardening functions. One function, « accounted for

C,
hardening in compression while the vremaining two, ap1s g2
allowed tensile hardening to occur independently in the two princi-
pal stress directions. The initial yield, subsequent yield and

final failure surfaces were given by

f(a,8) =0 (4-23)
where g = (a1,02,03) = (al, ayys °t2) denoted the three
(131)

hardening functions. In an earlier version of the theory,
only one tensile hardening function was used. The failure surface,
shown in Figure 4-5, was taken to be that of Kupfer, Hilsdorf and
Rusch, and was modeled piecewise using four or five complicated

functions.
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Plastic strain incrmements were governed by an associated flow
rule and the hardening parameters were assumed to vary according to

o= 2o & akeP kP o (akeP . P )12
i ” i ijg °oij
k k k _

§ * 8, Y83 = 1 (4-24)
where g, were values of a; at initial yield, 8; were hardening
functions, v; were equivalent plastic strain measures, k denoted
load increment number, Akep was the total equivalent plastic

strain increment for increment k, and the 's's were increment depen-
dent apportioning constants. Hardening function By» Was deter-
mined using only uniaxial compression data in the same manner as
Chen and Chen. The other hardening functions B, = B85 were ob-
tained from uniaxial tension data. All three functions included a
strain softening branch. The 's's were constants with values from
zero to one. When the stress state lie in the biaxial compression

}tension: quadrant only compressive tensile equivalent plastic
strain measure(s) were changing and 65 = 55 =0 | 6% = 0'. In

l l
the compression-tension quadrants 6% and either &3 or &) were

non zero and were determined by the ratio of the existing principal
stresses.

Murray and co-workers compared the biaxial stress-strain re-
sponse predicted by the theory with the experimental data of Kupfer,
Hilsdorf and RU'sch, Figure 4-6. Since the hardening functions were
based on uniaxial data it is not clear why the correlation with
uniaxial results is poorer than with biaxial compression results.
Also, the theory does not predict the tensile response accurately in
compression-tension. In general, results are best for biaxial com-
pression and again it 1is seen that theoretical predictions for
biaxial stress-strain are not uniformly accurate when the hardening
functions are derived from only uniaxial data.
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Figure 4-6. Comparison between theory of Murray et al, and data of
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An analysis of a prestressed concrete panel was performed
using the constitutive theory; a discussion of the steps necessary
to incorporate the theory into a computer code is given in Refer-

(132,133) In the analysis, results for load versus deflec-

ences.
tion were found to be sensitive to how the post peak tensile
behavior was simulated. Initially, in the tension-tension quad-
rant, a linearly elastic - perfectly plastic model was used. Thus
cracking and concomitant stress reduction were not considered.
However, predicted structural response was significantly stiffer
than that observed experimentally. When concrete tensile response
was subsequently simulated using a strain so%tening branch, so that
tensile stresses were shed after reaching a peak value, predicted
results matched experimental quite closely. Thus again, it is seen
that to adequately predict gradual softening of a structure's re-
sponse it is necessary to incorporate into the model mechanisms for

progressive performance degradation.

Murray's theory exhibits the same shortcomings as previously
discussed theories; an inability to simulate monotonic biaxial
stress-strain response with uniform accuracy and a lack of a cyclic
response model. Additionally no details are given for handling
final crushing or tensile cracking. Finally, compared to the models
of Buyukozturk and Chen and Chen, the mathematical descriptions of
yield and failure surfaces are overly complicated. Therefore, while
the theory does accurately predict monotonic structural response
there is nothing to recommend the theory over the previous, simplier
theories.

Of the three work hardening, plasticity theories of concrete
response none is obviously superior in its predictive capabilities.
Thus the Cnen and Chen model appears preferable because it simulates
concrete stress-strain and failure using a relatively simple mathe-
matical representation.

4.2.3 Biaxial, Cyclic Response Models

None of the preceding theories attempted to simulate the
cyclic response of concrete when subjected to biaxial loading.
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Darwin and Pecknold P ),have been the only authors to
K develop a concrete biaxial constitutive theory with the principal
\
: objective of modeling cyclic response. The theory was not based on
: plasticity theory concepts but rather was an extension of uniaxial
f“ results previously reported by Saenz,(137) for monotonic loading
él and by Karsan and Jirsa(l38) for cyclic loading. An incremental
b stress-strain law was postulated since the model was intended for
*
! use in nonlinear finite element codes. For a single increment of
' externally applied load or displacement the stress and strain
@ increments were assumed linearly related and governed by the
j. orthotropic relation:
Y
, doy Ey v VE(E, 0 dey
; 1-v
g dr 0 0 (1-v?)alldy
i{ where at each point in the structure the coordinate axes were
‘V aligned with principal stress axes at the beginning of the incre- %
' |
xz ment. In the equation do; and do, were increments in stress
N components referred to the local coordinate system and not incre-
A ments in principal stress components. Moduli E1 and E2 were
3 assumed dependent oofthe existing state of strain and G was defined
m in terms of El’ E2 and v so as to be independent of local coor-
)
ks dinate axis orientation.
'E The strain dependence of E1 and Ez was accounted for by
fﬁ first defining 'equivalent strains' €1ur 2u° At the end of the
a nth load increment these strains were given by
= n k k-1
-\ O,i - ai .
e €iy = 2 — T i=1,2 (4-26)
i E.
i
:. k=1
A
)
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Here ¢. and Ee were the principal stress and tangent modulus in

the ith direction at the end of the kM

initial loading up to maximum attainable stress the authors assumed

load 1increment. For

€. E
4_0 2 (4-27)

g, =
‘ 1+[E_o_2]f_m+<m)
Es €ic €ic

where E0 was the concrete initial tangent modulus. Further ES =

°ic/€ic where 9jc Was the stress on the Kupfer, Hilsdorf and

Rlisch failure surface for the current principal stress ratio,

01/02 and €;c Was the corresponding strain. Eq. 4-27 was a
generalization of the uniaxial model of Saenz.(137) Ei was then
defined by

Ei = dcx]-/deiu . (4-28)

To complete the monotonic loading theory mathematical representa-
tions were developed for the Kupfer, Hilsdorf and Risch failure
surface and for the corresponding strain enve]ope.(134) Also
Poisson's ratio v was assumed stress dependent for uniaxial compres-
sion and biaxial tension-compression and equal to 0.2 otherwise.
Because extensive use was made of the Kupfer, Hilsdorf and Riisch
data in the definition of the functional forms of model parameters,
the constitutive model replicated that data very well.

The principal objective of Darwin and Pecknold was to simulate
cyclic biaxial response in the post-peak stress region. Since no
cyclic biaxial data existed, the authors used as their starting

(138) Karsan and

point the uniaxial data of Karsan and Jirsa.
Jirsa found that the peak stresses for successive cycles of
uniaxial, compressive load lay approximately on a single "envelope"
curve, Figure 4-7, and that upon unloading to the null stress state,
Figure 4-7, the residual plastic strain €04 was related to the

strain €5 on the envelope curve at the point of unloading by
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5

QE where €j, Was the uniaxial strain corresponding to the uniaxial
0 compressive strength.

3; Karsan and Jirsa also defined a ‘'common point' curve. When
g; unloading occurred from any point on or above the common point
K curve, such as points 1, 3, 4, 5, 6 in Figure 4-8, the reloading
“ curve always intersected the unload curve where the unload curve
;; intersected the common point line (i.e., points A, B, C, D). When
g{ the initial point of unloading was beneath the common point curve
ﬁf (i.e., points 7, 8) the reload curve always passed through the point
1 4

of initial unload.

Darwin and Pecknold incorporated
relation and the common point curve
addition introduced a ‘'turning point'

width of unload-reload loops and hence

the residual plastic strain

into their theory, and in
curve which controlled the

the amount of energy dissi-

' pated during a load cycle. A typical piecewise linear load cycle
ABCDEF 1is shown in Figure 4-9. Segment A B joins the envelope and
B turning point curves and has the same slope as the concrete initial
tangent modulus Eo' The intersection of A B with the common point

:& curve defines point E. Point D is defined by Eq. 4-29. Unloading
f from B to the null stress state at C is along a trajectory parallel
rﬂ to D E. Subsequently the strain is reduced to point D before any
4 reloading can occur. Monotonic reloading from D terminates at F
N after which the response follows the envelope curve. Figure 4-10
'i' shows that by judicious choice of the common and turning point
’% curves, Darwin and Pecknold were able to match the Karsan and Jirsa
'# data reasonably well.
3 Darwin and Pecknold also included post-crushing and fracture
: behavior in their model. Crushing failure occurred when the equiva-
-

lent strain in either principal direction reached 4‘cu Tensile

b
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Uniaxial, cyclic, compressive stress-strain history
showing loop closure on or below common point curve.
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Figure 4-9. Piecewise linear description of stress-strain cycle.
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Figure 4-10. Comparison of Darwin and Pecknold proposed model
results with experimental data of Karsan and
Jirsa.
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failure occurred along the two principal stress directions indepen-
dently. After tensile cracking, tensile stiffness perpendicular to
a crack was null, compressive stiffness was unchanged, shear stiff-
ness parallel to the crack was reduced, but not zero, and cracks
were allowed to open and close.

Nonlinear finite element analyses were performed and, using
the developed theory, cyclic loading of reinforced concrete panels
were modeled. In Figure 4-11 1is shown a comparison between the
experimental load-deflecton results of Cervanka and Gerst]e,(l39)
and the predictions of Darwin and Peckno]d.(135) Results for the
first one and a half load cycles are shown and the agreement between
theory and experiment was very satisfactory. The authors attributed
the quality of the agreement to the inclusion in their theory of,
(i) cyclic effects, (ii) independent tensile failure in the two

principal stress directions,

4.3  TRIAXIAL CONSTITUTIVE MODELS

Triaxial constitutive models of concrete fall into several
categories. The simplest approaches are little more than nonlinear
elasticity while the most complicated defy clear non-mathematical
discussion. In the following the theories are divided into

) variable modulus

° hypoelasticity

. elastic plastic

() plastic fracturing

[ endochronic.

4.3.1 Variable Modulus Models

Theories have been developed by Ahmad and Shah,(lao)

Decolin, Crutzen and Dei Poli,(141) Elwi and Murray(142)
(143)

and
Kotsovos and Newman. Typically the models are parameterized

curve fits lacking any justification other than they fit selected
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Comparison of cyclic panel

response predicted by pro-
posed model of Darwin and
Pecknold with experimental
data of Cervanka and Gerstle.
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sets of test data. Ahmad and Shah generalized the uniaxial curve
KA
Wy fit of Saenz Eq. 4-4. Elwi and Murray took the same curve fit and

defined an incremental stress-strain law for axisymmetric deforma-
tions only. The approach paralleled that of Darwin and Pecknold
(subsection 4.2.3). Cedolin et al. and Kotsovos and Newman gen-
eralized linear elasticity my making the bulk and shear moduli
functions of stress invariants I1 and JZ' The principal
shortcomings of these models are

AL

.-oo.‘._’.,
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P ,
o i
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-
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) They are only designed for monotonic load histories
since they unload along a loading path and preclude
irreversiblie effects.

XL 2 0
TREE
°

Most assume strain and stress principal axes always ;

uhy coincide.
:;, ° They are unsuitable for insertion into nonlinear
o finite element codes because they are formulated
‘:} only in terms of principal stress/strain directions
3551 which typically do not coincide with problem
A coordinate axes. Additionally most models are total
. stress-total strain relations while finite element
;2}, codes require nonlinear models be written in terms
" of incremental stress and strain quantities.
\ s 1
.0
’&i* ) They have not been used to model the response of
e even the simplest structures.
=
o
.; 4.3.2 Hypoelastic Models
W .
P Coon and Evans{l4%) starting from the general representation
;35_ of a hypoelastic material developed an incremental stress-strain
Tn,, Taw of the form
:? daij = 'l.]k] (o ) de (4-30)
B
. After assuming concrete to be isotropic the authors reduced
:hj{ Aijk] to a linear function of stress depending on seven material
e
&h constants. A unique feature of Eq. 4-30 was stress induced
D
:ﬁs. anisotropy. Concrete failure was not an additional assumption but
. rather occurred when
§J
9:'
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det Ay =0 . (4-31)
5353 i.e., when additional strain could occur without stress change. The
fKE theory was used to Egg}icate the experim?ﬁa%a data of Richart,
&ﬁ > Brandtzaeg and Brown and of Gardner. The seven con-
;:}\ stants in Aijk] were assigned values without discussion and the
qui failure surface was circular on planes of constant pressure. The
3 correlation obtained between stress-strain response predicted by Eq.
22&% 4-31 and the experimental data was less satisfactory than that
customarily found using other theories. Finally, at any stress
Eﬁgg state, loading and unloading directions in stress space were
ia N parallel. All in all this theory has little to recommend it.
190
4,3.3 Elastic Plastic Models
S: The biaxial plasticity models discussed in section 4.2.2 can

<

" be extended to triaxial stresses; however their failure surfaces on

~

5 planes of constant pressure are circles. Two theories that were
explicitly developed for triaxial application but still have this

) %ﬁ weakness are due to Green and Swanson[76] and Dimaggio and
:1%2 sandler [147]

& % The first theory assumed that the elastic region of stress
;? space was bounded by two surfaces, Fl and F2, given by

K

e
oo Fi =v3 *9(l) =K , I=o0p

5 o, 212
“:i.'g‘:. F2 = '2—‘ + r '2— - KZ (4—32)
AR [ ] [ (x-800)]
)

S g(x) = -1000.[12.2-11e(*/40000)] [ o ~700
Al

o Parameter r was a constant while Ky and K, were strain hardening
“ﬁiﬁ functions that controlled the expansion (i.e., motion) of the sur-
N ‘E faces. By using the two functions F1 and F2 the authors were
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able to predict both specimen contraction (surface Fl) and dilata-
tion (surface F2) that occurs in uniaxial compression. Failure
was governed by assigning a limiting value to Kl' Strain harden-
ing functions K1 and K2 were assumed given by

P P

P (4-33)

2

_ _ p_1_.p,p
where hy = h, (I, ‘rz), h, = (1;, JZ), de’ = > deijdeij.

Thus dK1 was related to the total plastic strain movement
while dK2 was related only to deBC' the increment in plastic
plastic volumetric shrinkage arising from motion of surface F2.
The authors found it difficult to justify the choice of Eq. 4-33.
An associated flow rule was assumed, so

.p - L aFl

+ A
€ij 1 a°ij 2 3. (4-34)

and standard plasticity procedures were used to obtain an incre-
mental stress—strain law. The theory was applied to the simulation
of specimen data with mixed success. As a test of the theory a set
of thick-walled cylinders subject to axial compression and in-
ternal pressure were tested and then modeled. Again some of the
tests were simulated well while other correlated poorly and the
authors were unable to explain unevenness in the correlation.

The theory of Green and Swanson had some obvious shortcomings

o Failure surface was axisymmetric about pressure axis.

® No hysteresis.

e Unloading and reloading was entirely elastic
e No strain softening once the strength envelope was reached.
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The theory derived by Dimaggio and Sand]er[l47] was

originally developed to model soils and was the prototype on which
Green and Swanson based their two-surface models. The model derived
by Dimaggio and Sandler for concrete became the “Weidlinger
Associates” model! and was even simpler than that of Green and
Swanson in that

) surface F] was absent
. surface Fp was fixed.

Consequently this model could not predict irreversible volume
compaction under hydrostatic compression and could not simulate any
non-linear response in concrete, prior to failure. Indeed concrete
uniaxial response was modeled as elastic-perfectly plastic. In
addition the model suffered from all the faults of the Green and
Swanson theory. Clearly as a theory to model the complex response
of plane concrete the ‘'Weidlinger Associates' theory was totally
inadequate. However, of all concrete models developed this one has
seen the most intensive application because the authors assert that
uncertainties in structural data obviate the need for more complex
models.

4.3.4 Plastic-Fracturing Models

Dougill[148] developed a theory of elastic-fracturing

solids. The model had the following attributes:

1) Loss of stiffness due to stable progressive frac-
turing during loading.

2) Linear elastic unload-reload with a tangent stiff-
ness that degrades as internal fracturing progresses
- i.e., process dependent elastic moduli.

3) No residual strains when stresses are removed, i.e.,
complete recovery.
Figure 4-13 shows the cyclic uniaxial response predicted by
the theory.
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Characteristics 1) and 2) are observed in concrete and can be
attributed to progressive microcracking or microfracturing. Char-
acteristic 3) is unrealistic for concrete and Dougill noted in his
closing paragraph that his fracturing theory "in combination with a
hardening or perfectly plastic solid would seem most appropriate."

Bazant and Kim[149]
Dougill's elastic-fracturing theory to develop a plastic-fracturing
model of plain concrete response. The plasticity portion of the
model was a non-associated form of the pressure-dependent
Drucker-Prager theory. For monotonic loading Bazant and Kim assumed
a loading function of the form

subsequently combined plasticity with

T+g(lo) -H=0 (4-35)
where

=2 1

T =785 0= on!3 - (4-36)

Function H accounted for plastic hardening, though was not
explicitly needed. Eg. 4-35 was used only as a loading surface in
the sense that it was usea to motivate a non-associated flow rule
for plastic strains. The flow rule was

. S..
i = AP (g g8 ayy) (8-37)
where

. Gs,.&.. +TKp'¢
AP ij "ij kk (4-38)

T (G +Kags'+h)

For an associated flow rule 8 = B' = 3ag/3c. However, the authors
independently specified 8 so that g could account for plastic slip
induced dilatancy while 8' was identified as an internal friction
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coefficient. In the definition of AP, G and K were the elastic
Q shear and bulk moduli, éij was the deviatoric strain increment and
b h was a plastic tangent modulus associated with H in Eq. 4-35.

To the plasticity theory the authors added an elastic-frac-
X turing theory which accounted for stiffness degradation and strain
e softening. Dougill's work was taken as the point of departure.
25 Linear elasticity is characterized by s = 2Ge, ¢ = 3Ke, ¢ =
I ekk/3. In the fracturing theory elasticities G and K degraded as
strain accumulated because of internal fracturing. The incremental
i variable modulus constitutive equations were obtained by differenti-
v ating the linear elastic laws:

$=26g*+26e , o=3Ke* 3Ke (4-39)

In Eq. 4-39 the fracturing stresses were identified as

éf = -Zég s of = -3Ke (4-40)

To obtain constitutive equations for G and K the existence of
a fracturing loading surface was assumed:

B S e

e) =¥+ kle) =M, ,Fape

1584 (4-41)

o S o

Function H2 characterized the hardening of the surface but
did not need to be explicitly identified. Analogous to the
plasticity portion of the model the fracturing stress increments
were first assumed derived from an associated law:

> ar ap e e

M |
- . . . . Ag :
4 f ssfeaf 1ahaonng-—+1i1 (4-42)
W 2y
4
i
Q where k' = dk/de. To improve the theory fit to experimental data,

associativity was relaxed and the constitutive assumption
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=—2—Y——, o =3 (4-43)

used. During loading the strain remained on the loading surface Eq.
4-47 and so = 0. The authors assumed HZ = A¢ and thus obtained

he 3+ Kte) (a-42)

The plastic-fracturing theory of Bazant and Kim was achieved
by combining the two preceding theories as follows:

.é = Zﬁ(é'ép) ‘.é.f
(4-45)

s = 3K(c - eP) - af

Thus stress was influenced by both plastic slip and elastic
fracturing. Plastic and cracking effects were additive and inter-
acted through elasticities G and K. The theory embodied in Egs.
4-35 to 4-45 contained six functions, 8', B8, h, a, k, &', which were
obtained analytically through an extensive curve fitting exercise.
The functions depended on 22 constants most of which depended on
f' . Additionally an initial value of Poisson's Ratio had to be
specified.

From Eq. 4-45 it was possible to develop an expression of the
form

°i5 = Cijk1 Sij

(4-46)

Thus the theory appeared attractive for finite element appli-
cations except that the non-associated laws implied a non-symmetric
stiffness matrix. Consequences of this asymmetry for incorporation
into a code have not been explored.
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In the same paper the concept of jump-kinematic hardening was

E% introduced so that the unload-reload loops seen in concrete uniaxial
;ﬁ cyclic compression could be modeled. As the name suggests the
ﬁﬁ centers of the plasticity and fracturing loading surfaces (g = g , ¢
X = B) were instantly repositioned when the loading direction was
;s changed. Rules for moving g and g were given and implicit in the
! presentation was the assumption that during unloading concrete had
12. no finite elastic region.

- The authors presented extensive evidence of the ability of
gg their constitutive representation to fit experimental data. This

fit resulted from the judicious choice of the 22 constants and six
complicated functions. The theory appears straightforward to imple-

?w ment and should be easy to apply since the only free parameter is
ﬁ, f'c. However the theory has not been incorporated into a finite
:¥‘ element code and so it is impossible to assess theory predictive
w capability.
% L]
K 4.3.5 Endochronic Models
i

.
o Bazant was also responsible for the evolution of a series of
R endochronic theories of plain concrete response. The principal
"1y distinguishing feature of these theories is that they are incremen-
M
ﬁ tally non-linear. The first paper, with Bhat[15°] was in 1976.
E{ Strain increments ¢ had an additive decomposition.
'7'.
R g =t s (4-47)
ﬁ: into elastic and anelastic components. Anelasticity was governed by
W the set of equations
-
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;p=ép+;p1,;p=%;k

.p s [ ] L L] . L]

& =»r 2, 2="f(ngn, n=glge) & (4-48)
gz-_-%-eij é'l‘] s 5p51=l-(x:2;§.) 3

The theory was similar to viscoelasticity in that anelastic
strains accumulated as soon as stress was applied; i.e., no linear
elastic region existed. The variable z was called intrinsic time
and monotonically increased for all deformation histories. The
incremental stress-strain law was

o = C1Jk1 ek] z - 3Kx 8 i (4-49)
where cijk] was the usual matrix of elasticities which decreased
very slightly with increasing z. The incremental nonlinearity of
the theory is evident in Eq. 4-49 where z and A are functions of é.

As with the plastic fracturing theory extensive curve fitting
was undertaken to define functions f, g, and L in Eq. 4-48. In all
18 constants and five rather complicated intermediate functions were
finally used. The only free parameter was f'c. Good correlation
was obtained between the theory and a diverse suite of experimental
data for monotonic loading. Principal theory shortcoming was an
inability to adequately predict uniaxial compressive cyclic response
in that unload-reload stress-strain paths did not form closed loops.

In a subsequent paper[151] the authors demonstrated the
ability of their theory to replicate the moment-curvature and
load-deflection response of reinforced concrete cantilever beams
loaded by alternating cyclic end loads. Sorenson[152’153] and
Powell, Villiers and Litton[154] incorporated the theory into
finite element codes. All papers reported good correlation between
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their codes and the cyclic response of reinforced concrete beams and
shear panels. Sand]er[155] believed the theory was unstable in
that small sinusoidal perturbations in strain history would change
stress history significantly. Sandler's objection notwithstanding
no stability problems were encountered by any author using the
theory.

More recently Bazant reformulated the theory with Shieh[156]
and developed entirely new functional forms for f, g, and L. The
new functions were as complicated as before but the following
features were improved.

° inelastic hydrostatic response

. monotonic strain softening

° cyclic compressive response

() volume changes during strain softening

° differences in radial and non-radial loading
° triaxial failure envelope shape.

The formulation was incorporated into a finite element code
and applied to a single, ideal plain concrete problem.

The 1latest endochronic theory 1is a hysteretic-fracturing-
endochronic model of plain concrete first introduced in[157] and

fully developed in.[158]

The theory combined the endochronic
concepts with the fracturing and jump-kinematic ideas contained
in[149] and discussed in Section 4.3.4. As with Bazant's other
theories, elaborate curve fits were constructed to accommodate
diverse sets of uniaxial, bijaxial, triaxial, monotonic and cyclic
data. The predictive capability of this theory remains to be

demonstrated.

4.3.6 Constitutive Theory Conclusions and Recommendations

Many models for plain concrete triaxial response have been
developed. The variable modulus and hypoelastic theories are of no
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practical consequence. The conventional elastic-plastic theories
are straightforward to implement but have only limited predictive
capability because so many observed features of concrete behavior
are not replicated. The plastic-fracturing and endochronic theories
are first attempts at comprehensive plain concrete response repre-
sentations and, compared to preceding models are very mathematical
with many parameters.

For the analysis of the response of protective structures the
most promising theories are those of Bazant since they best simulate
post-peak softening and cyclic response. However, these theories
are the most recent and so least tested. For accurate protective
structure analysis realistic models of plain concrete response are
needed; thus the following recommendations are made:

1. The predictive capabilities of the plastic-

fracturing and endochronic theories should be
further assessed.

2. Plastic-fracturing and endochronic theories
should be modified to include strain-rate
effects.
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! SECTION 5
DEVELOPMENT OF IMPROVED CONSTITUTIVE MODEL OF PLAIN CONCRETE

o A plastic-fracturing theory was selected for exploration as a
y candidate for an improved constitutive model of plain concrete.
) This section documents progress made to-date on the development of
N this model.

5.1 GENERAL THEORY

The plastic-fracturing theory consists of two main elements:
(1) a fracturing element and (2) a plastic element. A judicious
combination of these two elements allows simulation of the following

aSGd
o

$ fundamental features of plain concrete: (1) strain hardening, (2)
$ strain softening, (3) stiffness degradation, and (4) realistic
? failure surface geometry.

Ry

3 The fracturing element of this model is due to Doug111(148)
3‘ and is discussed in subsection 5.1.1 (see also subsection 4.3.4).
b This portion of the plain concrete model reflects progressive frac-
W ture and is the key to the description of progressive stiffness
ﬁ: degradation.

? The plastic element of the plain concrete model consists of a
3 plasticity theory with strain softening. This portion of the model
“ is intended to simulate inelastic slip which is observed in all test
o data.

§ It is noted that the use of a plastic-fracturing theory for

plain concrete has been explored previously by Bazant and
v, Kim.(149) A discussion of this work is presented in subsection
? 4.3.4., The theory presented herein differs from that of Bazant and
0 Kim in that (1) the formulation is more general and (2) the plastic
- and fracturing elements are combined in a different manner.

>
»

5.1.1 The Progressively-Fracturing Solid

Pl

Dougill(148) formulated a theory for a pure fracturing
elastic material using an analogy with conventional plasticity.
This theory, which represents the 'fracturing' part of the plastic-
fracturing theory, is the main source of progressive stiffness

-
o,

)i

-r-‘u’.
- - PLIN
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degradation and strain softening in plain concrete. Namely, Dougill

realized that these phenomena were primarily due to progressive
microcracking of the concrete.

Dougill begins his fracturing model by assuming that the
material is perfectly elastic. Consequently, upon restricting the
discussion to small strain, the stress and strain tensors are
related by

- s e
S ol
s

P LT

)

93 = Cijkocke (5-1)
in which %ij represents the current (secant) stiffness tensor of
the material; this tensor is in general anisotropic with the
exception of the initial (unfractured) state of the material. As
fracture progresses, the stiffness tensor changes according to

%5 = Cigkeskr * Cijkecke (5-2)

where the superior dot indicates differentiation with respect to a
"bookkeeping' time variable. Dougill associates the first term in
(5-2) with the elastic component of the stress rate tensor and the

last term with progressive fracture:

i3 = Cijkecko> (5-3)
lf _ .

Dougill next associates o with a ‘'fracture surface' in

1
strain space. This surface encloses all combinations of strain that
can be obtained without changing the stiffness of the material
(i.e., without causing further microcracking). The fracture surface

is assumed to be regular and of the form

FlegyoHy) = 0 (5-5)
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where the parameters Hn (n = 1,2, ..., N) describe the history of
progressive fracture. These terms are selected such that

- H <0 (5-6)
during progressive fracture. Consequently, if

F=3F 35-& 0 (5-7)

defines progressive fracture, then the latter occurs only when

F =0 and gF
e,ij

>0 . (5-8)

On the other hand, progressive fracture ceases and the
material responds elastically without change in the stiffness tensor
if

aF :
e;. <0 . (5-9)
3eij 1J -

F<«<0 , orfF =0 and

Dougill next notes that, as a consequence of (5-8), it is
possible to write the 'fracture stress decrement' %5 in the form

“f ofF
O1J = gU ?qo— ekﬂ . (5—106)

Since %5 is a symmetric tensor, it follows that gij must be a
symmetric tensor. If one now restricts the theory to materials that
obey I1'iushin's postulate,(lsg) i.e., if one requires that the
total work done during the application and removal of a small
increment of deformation must be positive or zero, and if the tensor
gij is not a function of the strain rate EIJ then the fracture
stress decrement must be normal to the fracture surface so that
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P °f aF _ofF °

"-: g:.: = - K € , K>0 . (5-10b)
.? .)

iéi% The scalar K may be a function of strain and strain history, but not
s of the current strain rate.

:PJB)

éﬁ . It is evident at this point that Dougill's model corresponds
:%:¢ to conventional plasticity with an interchange of kinematic for
'.- & . » -

) static variables. The form (5-10b) corresponds to an ‘associated
KA flow rule' within the context of such an interchange. But, as with

3 plasticity it will be necessary to relax the constraint (5-10b) to

(,i? some degree in order to adequately simulate real material behavior.
L

C» The scalar K in (5-10b) can conveniently be expressed in terms
gfri of the rate of energy dissipated per unit volume of material, D, and
ﬁi} the parameters Hn' The energy per unit volume during progressive
o < fracture (loading) is

¥

Q. . 1

AV - - _ \
bon D':ZT“ij‘ijdt 7 %ij%ij (5-11a)
-:"'r '

i which, when differentiated, becomes

J

'*I!'Ui

) S 1 * : __1°f _
::' D—?(UiJGIJ - 01351\]) -‘_—?aijeij . (5 11b)
RN

Lo Now, using (5-7) and multiplying both sides of (5-10b) by €43 and

using (5-13), one obtains

Ko ——20 (5-12)

Given the surface F, the rate of change of the stiffness
tensor (stiffness degradation) can be computed by rewriting the flow
rule (5-10b) in the form




oF oF of :
. de .. 9¢€ de rs
f _ ij K rs
o5 = - K A ) (5-13)
de Pq

Pq

Upon conbiming Eqs. 5-2, 5-3 and 5-13, one obtains the incre-
mental relation

°ij = ngkn‘ka (5-14a)
where
K of of oF c
de. . de 3e rs
f ij ““rs “k{
Ciske  Cijgee - o . (5-14b)
ae _ °pg

Pq

The form (5-14) is linear in the strain rate and stress rate, i.e.,
it is incrementally linear.

A comparison of Eq. 5-13 with Eq. 5-4 suggests the following

form for the stiffness rate tensor éijk0:

aF  oF
. ae . ac o
N ij ke aF _
Cie = - K\ =2 dey s ' Ri jke (5-15a)
aepqepq

where Riij is symmetric tensor with the property

Rijkﬂekﬂ =0 . (5-15b)

The tensor Rijkﬂ is assumed to be zero in most of Dougill's work.

A useful special case of the above formulation occurs where
one assumes F to be a linear function of the strains with a single
parameter h:

F =2 -h (5-16)

1§%ij
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where xij denote constants. This leads to the elementary result

f 2 dD .
%ij =~ R dh *ij *kecke (5-17)

and

°f

o °i . ‘kﬂ
Cijke =~ - (5-18)

The form (5-16) corresponds to isotropic softening and the relations
(5~16) - (5-18) will be examined in some detail in Section 6.

The above formulation can easily be extended to include piece-
wise linear functions F. This subject has been studied by Dougill
and Rida. (160)

The above formulation, with an appopriate choice of the dis-
sipation function 0, leads to a number of important observed re-
sponse characteristics of plain concrete. These include degradation
of the unload-reload stiffness moduli and strain softening. These
effects are depicted in Figure 4-13 for the case of uniaxial com-

pression.

Dougill has explored the behavior of the fracturing element
using a precise linear representation for the surface F = 0,
Typical softening behavior for a uniaxial tensile specimen is shown
in Figure 5-1 for an elementary dissipation function D(h). (A
similar behavior can be generated in compression.) Typical behavior
for a biaxial case is depicted in Figure 5-2. In this example the
curve shown represents the peak (this peak is referred to as an
'instability' point.) of stress-strain curves, similar to that shown
in Figure 5-1, obtained by radial loading. The similarity of Figure
5-2 to the failure envelop for plain concrete (see Figure 2-30) is
evident although it is too early in the exploration phase of this
model to make much of this point.
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Figure 5-1. Uniaxial tensile behavior.
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Biaxial example of instability surface.
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5.1.2 The Plastic Solid

The plastic element is based upon well-known plasticity con-
cepts. Accordingly, for the plastic element one postulates a
plastic loading surface (or plastic potential) defined by

¢(o =0 . (5-19)

ij? n)
in which Hn(n =1, 2, ... N') are scalars (hardening parameters).

Upon decomposing the strain rate €. of this element according to:

ij
. _ .e .p _
€ij = €4 + € (5-20)
with
S (5-21)
iJ= Tijkeke

where Sijki denote constants, and upon associating éfj with the
potential &, one has

‘p _ 30 30

€jiZAgg—3,— 0 (5-22)
ij= "0, i okﬂ ke

where A denotes a scalar. Plastic flow takes place when F = 0 and F

= 0. The element is elastic when F < 0, or when F = 0 and F < 0.
If one defines the plastic dissipation according to

=1, .p
"? i5515 (5-23)
then one evaluates the scalar A as
A= _20___ . (5-24)
a¢ 3 '
a”n
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o The potential ¢ in the above formulation need not be the yield
iyt surface. If the two coincide, then (5-22) constitutes an associated
e $ flow rate. In general, it will be necessary to relax the constraint
of an associated flow rule in order to properly simulate real
v o material behavior.

N
A 5.1.3 The Plastic-Fracturing Solid

%ﬁﬁ; The constitutive relations for the plastic and fracturing
elements can be placed in the incrementally linear form

Py (1) _ e (1) (1) _ 0 (1)
e % = Cijkeske  » Sij = Sijke%ke’ (5-25)

s (2) _ o (2) (2) _f c(2)
LN % = Ciskecke > Si§ = Sijkeoke (5-26)

Yy where the superscript (1) denotes the elastic element and the super-
script (2) denotes the fracturing element, the tensors cf}ki’
e L p P

ﬁﬁﬂ: Sijkf’ Cijkﬂ' Siij are non-constant and depend upon the
Al current state of stress and strain in each element.

Ml It is emphasized at this point that the stress, strain fields
J of the two elements are not connected. Specification of relations
it between the "(1)" fields and the “(2)" fields constitutes is a

Rt definition of the manner in which the elements are"mixed.

M To-date the plastic and fracturing elements have been mixed
. two ways in the 1literature. In his plastic-fracturing model,
231 Bazant(149) utilizes a "parallel" mixture of these elements in
%' which

(1) _ (@) _

eij = € = €. g

(1) , (2)
i3 i » 04y =0 o (5-27)

ij ij

.pk: Accordingly, one has for the combined element

"tk 0f = (ngko + C:jkg)ckc (parallel mixture) . (5-28)
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where it 1is noted that c?jkﬂ must be .evaluated* at stress state

1
).

In his endochronic-fracturing mode1,(159) Bazant* assumes a
‘series' mixture in which

(1) _ (2) _ _ (1) (2) _
a,ij = oiJ- = G,ij ’ eij = eij + eij (5 29)
which leads to the combined element:
S _ (<P f : . . _
€5 = (Sijkl + Sijk2)°k2 (series mixture) (5-30)

(.2-).
1]

Other mixture rules may be invoked it appropriate. For
example, the stresses in (5-27) can be combined with ‘weights'
n(l) and n(z) as follows:

where ngkﬂ must be evaluated at strain state ¢

€

(1) _ (2) - (1) (1) (2) (2) (parallel mixtu
Bj =iy o oy = ey el RO weighted (-31)
stress fields)

Under (5-31), the mixture has the constitutive relation

1 2).f
% = (n( )ng + n( )C.

ke ijke)eke (5-32)

The manner in which plastic and fracturing elements are com-
bined is arbitrary at this point. Investigation of both series and
parallel mixtures is necessary before one can specify an optimum
mixing procedure. Such a study is in progress.

*Bazant(140) does not appear to differentiate between the stress
and strain states in the two elements for the purpose of evaluating
the coefficient tensors.

o
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5.3 SPECIFICATION OF FAILURE SURFACE FOR PLAIN CONCRETE

The failure surface in stress space represents a very
important part of a constitutive relation for plain concrete. In
those regions of stress space where brittle fracture does not occur,
this surface also marks the beginning of stiffness degradation. The
purpose of this section is to present the results of a study(lao)
designed to construct and validate a failure surface of plain
concrete that mirrors actual material behavior.

In view of its importance, a number of previous attempts have
been made to formulate a failure criterion for plain concrete. Some
of these were aimed at practical design applications; whereas other
more complex expressions have been developed for use in advanced
computer codes. Examples of both types of formulations are given in
References 165, 166, 45, 164, 167, 168, 117, 169, 70, 170, 171, 176,
73. Excellent reviews of previously proposed failure criteria have
(169) Ottosen,(170) and wastiels.(172)
Most of the failure criteria proposed for three-dimensional stress

been presented by Link,

states involve relatively complex expressions for which more than
three material parameters are required.

The aforementioned criteria were developed to model the
experimentally determined shape of the failure surfaces as observed
in principal stress space. Thus, several studies (165,166,164,168,
70,170,171) have shown that the failure surfaces in the principal
stress spaces are shaped as pointed bullets with cross-sections in
octahedral planes which are triangular, monotonically curved
surfaces with smoothly rounded "“corners." Failure surfaces of
similar shapes have also been observed for other frictional
materials such as sand and clay (see, e.g., (161,162,163).

In addition to the characteristic cross-sectional shape in the
octahedral plane observed in several experimental investigations, 1
the three-dimensional failure surface for concrete has three inde- (
oy pendent characteristics: (1) the opening angle of the failure
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surface, often prescribed by the friction angle, (2) the curvature
of the failure surface in planes containing the hydrostatic axis,

i.e., curved meridians, and (3) the tensile strength. At least

three independent parameters are necessary for description of the
failure surface for concrete. The problem is to obtain simulation
accuracy without the use of more than three independent parameters.
This problem is addressed herein.

5.3.1 Failure Criterion

The proposed failure criterion for plain concrete represents
an extension of a three-dimensional failure criterion previously
developed for soils with curved failure enve]opes.(lﬁl) This
criterion is expressed in terms of the first and the third stress
invariants of the stress tensor as follows:

(13115 - 27)(1,/p )™ = ng (5-33)
where
I} = oy*aytay = a1 *0pp*03s (5-34)
I3 = 0)0p03
= 911922933 * 912923931 * 921°32°13 (5-35)

(017993937 * 992931013 * 933912971) -

The quantities 91199103 above denote the principal stresses
and p, is a reference pressure (taken as atmospheric). The value
of Ijll is 27 at the hydrostatic axis where o] = 9, =
g . The parameters n and m in Eq. (5-33) can be determined by
plotting (I /I - 27) versus (palll) at failure in a
1og-log dlagrmn and locating the best fitting straight line. The
intercept of this line with (pa/II)
and m is the slope of the line,

1 is the value of ns
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In principal stress space the failure surface defined by Eq.
(5-33) is shaped like an asymmetric bullet with the pointed apex at
the origin of the stress axis as shown in Figure 5-3(a). The apex
angle increases with the value of - The failure surface is
always concave towards the hydrostatic axis, and its curvature
increases with the value of m. For m = 0 the failure surface is
straight. Figure 5-3(b) shows typical cross-sections in the
octahedral plane (I1 = const.) for m = 0 and ny = 1, 10, 102,
and 103. As the value of m increases, the cross-sectional
shape changes from circular to triangular with smoothly rounded
edges in a fashion that conforms to experimental evidence. The
shape of these cross-sections do not change with the value of 11
when m = 0. For m > 0 the cross-sectional shape of the failure
surface changes from triangular to that approximating circular with
increasing value of Il' Similar changes in cross~-sectional shape
are observed from experimental studies on soil and concrete. The
cross-sections in Figure 5-3(b) also correspond to m = 1 and n =
102, 103, 104 and 105. This criterion has been shown to
model the experimentally determined three-dimensional strengths of
sand and normally consolidated clay with good accuracy in the range
of stresses where the failure envelopes are concave towards the
hydrostatic axis.(161’162’163)

Since concrete is a frictional material with many characteris-
tics similar to those of soils, it may be expected that its strength
can be expressed by a criterion similar to that in Eq. 5-33. In
order to include the cohesion and the tension which can be sustained
by concrete, a translation of the principal stress space along the
hydrostatic axis is performed as illustrated in Figure 5-4. Thus, a
constant stress asp; is added to the normal stresses before
substitution in Eq. 5-33:

9 =0y * a.p, (5-36a)

9, = 0y * a.p, (5-36b)
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Figure 5-4. Translation of principal stress space along hydro-
static axis to include effect of tensile strength
in failure criterion.
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p 7y =03 * ap, (5-36c)

:lk

iy where a is a dimensionless parameter. The value of a-p, reflects

' the effect of the tensile strength of the concrete. Although the

Y three material parameters describe separate characteristics of the

_ﬁ failure surface, they do interact -in calculation of, e.g., the

!;Y unconf ined compressive strength of the concrete. Thus, an infinite

k number of combinations of n, m, and "a" could result in the same

: value of the unconfined compressive strength.

% 5.3.2 Determination of Material Parameters

Eg In order to determine the values of the three material

;_ parameters for a given set of experimental data, the value of "a" is

ﬁ: estimated and a-p, is added to the normal stresses before

_;: substitution in Eq. 5-33. The procedure for finding m and m as

;f described above is then followed. To facilitate the estimate of

‘ "a", advantage may be taken of the fact that a-p, must be slightly

g( greater than the uniaxial tensile strength of the concrete as

;a indicated on Figure 5-4. If tensile tests are not part of a regular

i testing program, a sufficiently accurate value of the uniaxial
tensile strength may be obtained from the approximate formula |

ﬁ prescribed below.

" Uniaxial tensile strength - According to data presented in the

_F literature(164) the uniaxial tensile strength o varies between

o 5 percent and 13 percent of the unconfined compressive strength

b o.- The values of o, and o, may be related through a power

;. law of the type:

o 9. ¢

o, = T Pa <p_a> (5-37)

i

& where T and t are dimensionless parameters. The value of T = -0.61

ﬁ and t = 2/3 is appropriate for concrete.

¢
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Regression Analyses - Since the failure criterion is expressed

in terms of stress invariants, any type of test in which all
stresses are measured may be used for determination of the three
material parameters. However, it is advantageous to require only
the simplest possible types of tests such as, e.g., unconfined
compression and triaxial compression or biaxial tests for this
determination, and then check whether these simple tests are
sufficient for adequate characterization of the failure condition
for the particular concrete under investigation. This may be done
using various sets of data available in the literature which include
both simple and more complex three-dimensional tests.

In order to obtain the overall best fitting parameters,
regression analyses may be performed to determine the highest
possible value of the coefficient of determination rz. Figure 5-5
shows an example of the effect of varying the parameter "a" on the
values of r2, ny s and m for the tests on Mix A concrete
(70) Only the results of the
unconfined compression and the triaxial compression tests in

performed by Mills and Zimmerman.

addition to the estimated value of the uniaxial tensile strength
(from Eq. 5-37) were used to determine the three material
parameters. The uniaxial tensile strength was estimated to be -23.1
kg/cm2 (-2266 kn/m2) for Mix A concrete and the best fit value
of "a" = 23.2 resulted in ny = 119,339 and m = 1.127.

Except for the three points corresponding to the uniaxial
tensile strength of Figure 5-5, the points corresponding to the
other tests do not move enough on the diagram to show their
movements. The points corresponding to the wuniaxial tensile
strength tend to influence the location of the fit straight line.
However, each of the three lines would describe the failure surface
in the region of compressive stresses with reasonable accuracy.
Thus, it is an advantage to incorporate the uniaxial tensile
strength, even though it may be an estimate, in determination of the
material parameters in order to stabilize the failure ciiterion in
the region close to the origin and to describe the tensile strength
for the concrete with reasonable accuracy.
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The results of the cubical triaxial tests on Mix A concrete
are shown on Figure 5-5 for comparison. It may be seen that some
scatter of the data around the solid line does exist, but the
material parameters selected on the basis of the simple tests appear
to represent the data quite well.

5.3.3 Material Parameter Values

Twenty-one sets of data, considered to be of good quality,
were employed in a study of the applicability of the proposed
failure criterion to plain concrete and mortar. The material
parameters obtained in this study are given in Table 5-1 together
with the types of tests used for their determination. Where tests
of simple and more complex types were present in the investigations,
only the simple tests were employed for determination of the
material parameters. Thus, the results of unconfined compression
tests were always employed. The uniaxial tensile strength was also
most often employed in the parameter determination, whether measured
or estimated from Eq. 5-37. As indicated on Figure 5-5, the value
of the uniaxial tensile strength has a substantial influence on the
best fitting material parameters. It was often found that the
estimated value from Eq. 5-37 would result in better overall fit
than the value determined from experiments, although the two values
were not substantially different. This is because the value of
(I%/I3 - 27) 1is very sensitive to small changes in stress
near the origin, but this sensitivity is not reflected severely in
the actual fit between the experimental data and the mathematical
model for the failure surface.

Table 5-1 indicates that the results of triaxial compression
tests or biaxial tests (compression-compression, and sometimes
compression-tension) were also employed 1in most cases for
determination of material parameters. Data from these tests were

included to provide better overall fit between data and failure .

criterion. However, the material parameters for the torsion shear

(46)

tests performed by Bresler and Pister were determined from the

unconf ined compressive strengths and the estimated values of the
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Strength parameters for concrete and mortar

Table 5-1

AR
J

Tl gl

R

Type of Data From Type of (ac/p.) Maz. Param. a n o r:‘x (12/13-27)
Material Ref. No. Tests Based on at Illp‘-IOOO
ve, ut, 2 ve, Jur
10, 23 c-C 300 c-C 27.3 | 278,267 | 1.217 | o.997 62.3
4 uc, 1S 206.9 ve, dur 19.8 97,560 | 1.122 | 1.0 42.0
4 uc, TS 300.4 ve, vt 25.6 | 157,752 | 1.105 | 1.0 76.3
4 vc, TS5 386.5 ve, ur 31.0 | 255,398 | 1.124 | 1.0 108.5
vc, uT, uc, OT
10 ¢-C,c-1,7-T | 190 c-C. C-T 20.1 | 147,040 | 1.220 | 0.944 32.2
uc, UT ue, UT
10 c-c,c-1,1-1 | 315 ¢-C, C-T 28.5 | 159,795 | 1.133 | o.918 73.1
uc, uT uc, UT ;
10 ¢-C,c-T,T-T | 590 c-C, C-T 50.9 12,313 | 0.686 | 0.31 107.7 :
o, 1C ve, dur
Plain 16 c-C, cT 234.8 C 23.2 | 119,339 | 1.127 | 0.964 54.9
Concrete
ve, TC uc,
16 c-¢, CT 274.6 1c 25.8 55,173 | 0.956 | 0.923 74.9
uc, TC vc, Xt ‘
16 c-c, T 368.1 Tc 31.3 | 265,067 | 1.122 | o.902 106.0
ve, ¥t >
15 uc, c-¢ 2300 c-¢ 27.3 | 158,222 | 1.143 | o.897 59.0
. uc, 1 e, vt '
sé e ¢-C, T 301.6 TC 27.4 681,650 1.412 | o0.98s 39.6 '
“ ve, TC ve, Jur '
s*amsu) | c-c, cT 307 TC 27.8 746,100 | 1.396 | 0.979 48.4 '
. uc, TC e, dur
s*(eNer) | c-c, ct 273 IC 25.8 39,750 | 0.931 | 0.990 64.0 ,
¢
4 uc, TC :
5 (TIM) ¢-C, cr 325 ve, TC 28.0 162,347] 1.105 | 0.99 78.0 i
{1
‘ ve, IC ue, vt ;
5,18°(BaM) | ¢c-C, CT 312.1 TC 28.1 167,195 1.263 | 0.999 59.8 i
uc, Ut ue, et
19 ¢-C,C-T,T-T | 339.3 c-C, c-T 29.7 17.368| 0.790 | 0.896 74.0 )
't
“ ) e, ur :
5 (cw) uc, ¢-C 300 c-C 27.3 300,106 | 1.241 | 0.987 56.8
by
. 5 ve, oz ]
Mortar 5° (TLY) uc, c-c 300 c-C 27.6 8,671 0.695 | 0.9%0 71.0 i
“ ve, vt .
5,18" (8aM) | uc, c-c 310 c-C 28.0 54,436 | 0.969 | 6.992 67.4 \
]
ve, Xt ¢
1 uc, c-¢ 413.1 c-¢ 3.8 314,784 | 1.172 | 0.884 96.2 3
)
\
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uniaxial tensile strengths. These latter values were estimated from
the torsion shear tests involving pure shear. These stress
conditions are those closest to the uniaxial tensile stress
conditions in this series of tests. However, the uniaxial tensile
strengths might also have been estimated with good accuracy from Eq.
5-37 on the basis of the unconfined compressive strengths. Thus, it
is clear that the result of one simple test is sufficient for
estimation of material parameters. However, inclusion of additional
test results is generally advisable in order that the particular
characteristics of the concrete under investigation be captured in
the modeling of the failure criterion.

The values of "a" listed in Table 5-1 are determined by the
regression analyses to within 0.1. These values of 'a' (> 0) are
0.3 percent to 1.4 percent higher than |°tlpa|’ and they vary
between 19.8 and 33.8 with a single value as high as 50.9 for the
concrete and mortar included in this study, i.e.:

a= |at/pa( .(1.003 to 1.014) (5-38)

with the higher values of the coefficients to Iot/p I associated
with the lower values of njand m,

Typical values of m for concrete and mortar vary between 0.9
and 1.2 with extreme values of 0.69 and 1.41. In comparison, values
of m determined for cohesionless 5011(162) typically vary between
0.0 and 0.84. Thus, the curvatures of the failure envelopes for
concrete and mortar are substantially more pronounced than those for
cohesionless soil.

The values of m listed in Table 5-1 vary over a large
range. This 1is because these values are determined at pa/I1 =
1, which is a value that is very close to the origin of the
translated coordinate system as compared to the corresponding values
of pa/I1 for most tests on concrete. Figure 5-5 indicates that
even small variations in m result in large variations in o
because log-log scales are used in this diagram. However, the
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values of m and M combine in Eq. 5-33 to produce values of
(1 /I3 - 27) of comparables magnitudes at higher values of
I1 where most tests are performed. The values of (I%/I3 -
27) at Illpa = 1000 are listed in Table 5-1. These values are
all in the range from 40 to 108. Thus, the actual range of
strengths is not as large as may immediately appear from the range
of UE Values of " for cohesionless 50115(162) typically
vary from 20 to 280, and even smaller values may be obtained for
normally consolidated clays, whose effective stress friction angles
may be much smaller than those for sand. Thus, the opening angles
for concrete and mortar are much larger than those obtained for
soils.

5.3.4 Evaluation of Failure Criterion

In order to validate the proposed failure criterion, compari-
sons have been made between experimental data and failure surfaces
calculated from Eq.s 5-33 and 5-36. All data were plotted on the
biaxial plane, and data points were projected on the octahedral
plane for all data sets except those produced by Bresler and

Pister.(45) Those data sets containing results of triaxial com-
pression and extension tests were also shown on the triaxial plane.
The results of torsion shear tests (by Bresler and Pister(45) were

plotted on the t-o diagram and on the biaxial plane. The values of
‘at', s and m given in Table 5-1 were used for determination of
the theoretical failure surfaces. Examples of these comparisons are
given below.

Biaxial Plane - The 1lowest value of the coefficient of
determination, riax’ for all data sets was found for the tests
performed on concrete with o_ = 590 kg/cm2 (57,880 kN/mz) by
Kupfer et Agl.(36) The compgrison of test data (points) and
failure surface (solid 1line) 1is shown on the normalized biaxial
plane in Figure 5-6(a). All data, except those corresponding to
tension-tension, were used to determine the material parameters.
This set of data resulted in the lowest value of m and the highest

value of 'a' encountered in this study. Despite the low value of

Tmax® the failure criterion is seen to represent the test data
218
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with- reasonable accuracy. The data in the compression-tension area
~

[N

max "’

This is because one of the stresses in the translated coordinate

system (02) is very small, thus causing the value of 13 to be
small, resulting in a large value of (13113 - 27). Any small

exhibit sufficient scatter to cause the low value of r

deviation of the data points in this sensitive region from the best
fitting failure surface greatly affects the value of riax'
However, the actual fit between data and failure surface in this
region is not greatly affected. In order to study the failure
surface relative to the data in the tension-tension area, the data
are shown on the enlarged diagram in Figure 5-6(b). It may be seen
that the failure surface is smoothly rounded at the corner and that

it corresponds exceptionally well to the data in this region.

A major investigation was performed by Mills and Zimmer-
.(70) The results of their tests on Mix A concrete, which
contained tests in biaxial, triaxial, and octahedral planes, pro-
vided a good, coherent set of data for this study. The material
parameters for this concrete were determined on the basis of uncon-
fined compression, triaxial compression, and an estimated value of
the uniaxial tensile strength. The data obtained in the compres-
sion-compression region of the biaxial plane are shown in Figure
5-7(a). Although there is some scatter in the test results, the
proposed failure criterion is seen to represent the data quite
well. Note that the "pointed corner" in the tension-tension area is
actually smoothly rounded as shown in Figure 5-6(a).

The data obtained by Tasuji gﬁ_‘gl.(IZI) are compared with
the failure surface in the biaxial plane in Figure 5-7(b). Tests in
compression-compression, compression-tension, and tension-tension
were performed in this study. Again, the overall representation of
the data by the proposed failure criterion is reasonably good.

Triaxial Plane - Examples of comparisons between test data and

the proposed falure criterion are shown in triaxial planes in Figure
5-8. Note that in both diagrams in this figure, the material
parameters were determined on the basis of the unconfined
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Comparison of proposed failure criterion in triaxial
planes with results of triaxial compressior. and ex-
tension tests performed by (a) Mills and Zimmerman on
Mix A concrete, and by (b) Bertacchi and Rossi.

(1kg/cm® = 98.1kN/m).
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compression, the triaxial compression, and oa estimated value of the
uniaxial tensile strength. Thus, tne good agreement between the
results of the triaxial compression tests and the proposed failure
criterion could be expected. However, the strengths obtained in
triaxial extension are also well represented by the failure
criterion,

Figure 5-8 also shows that the failure surface in extension
cuts across the o = 0 plane at a very shallow angle. Therefore,
any small deviation between test data and failure surface at this
intersection in the triaxial plane will appear as a large deviation
in the biaxial plane. Comparison of the data points for Mix A
concrete indicated by arrows in Figures 5-7(a) and 5-8(a) shows that
these appear to deviate somewhat from the failure surface in the
biaxial plane (Figure 5-7(a)), whereas the same points in the
triaxial plane are very close to the proposed failure surface. Any
little amount of restraint in the testing apparatus would result in
too large strength in biaxial extension, and this would show up very
clearly in the biaxial plane. However, an evaluation in the
triaxial plane would likely show that the test data are not that far
from the actual failure surface. The natural scatter in test data
could easily account for durations of the magnitude indicated in
Figure 5-7(a)).

Octahedral Plane - The data from cubical triaxial tests on Mix
A concrete obtained by Mills and Zimmerman(70) are projected on
the octahedral plane corresponding to I1 = 150 kg/cm2 (14,715

kn/mz) in Figure 5-9(a). Values of tﬂe minor principal stress,
o, of 0, 29.5 kg/ecm® (2894 kn/m’), 59.1 kg/cm® (5798
kn/mz), and 88.6 kg/cm2 (8692 kn/mz) were used in these
tests. The points in Figure 5-9(a) corresponding to these values of
o3 are shown separately on the octahedral plane for comparison
with the proposed failure surface. The projected data points were
transferred to the common octahedral plane along the curved
meridians using a technique involving the diagram in Figure 5-5.
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Note again that only data from unconfined compression, triaxial
compression, and uniaxial tension were used for determination of
material parameters. The data from these tests are at the top of
the diagrams in Figure 5-9(a). Only one sixth of the octahedral
plane is shown in Figures 5-9(a) and 5-9(b), and all data points
shown in these two diagrams correspond to compressive (or zero)
stresses isn the cubical traixial tests. The data shown in Figure
5-9(c) are those produced in the biaxial plane and previously shown
on Figure 5-7(b). These data are therefore projected along the
respective curved meridians up on the octahedral plane corresponding
to I1 = 150 kg/cm2 (14,715 kn/mz). Any small amount of
scatter in the biaxial plane, especially in the region of
compression-tension and tension-tension would be magnified by
projection on the octahedral plane. Especially one point on Figure
5-9(c) appears to have moved inside the failure surface in the
region of compression-tension. This is the point in Figure 5-7(b)
corresponding to allac = 0.5, The point in Figure 5-7(b) does
not appear to be substantially removed from the failure surface, but
the magnification of the dislocation of this point relative to the
failure surface is evident in Figure 5-9(c). The points corre-
sponding to tension-tension in Figure 5-7(b) are only slightly
outside the failure surface. However, these points cannot even be
projected on the octahedral plane in Figure 5-9(c), because in the
translated stress space they are located in a region of the space

which corresponds to one of the principal stresses being negative.

Note that the experimental points on the octahedral planes in {
all cases describe failure surfaces which are triangular with
monotonically curved surfaces and smoothly rounded edges, as does
the proposed failure criterion. The overall fit between the data
points and the failure surfaces in Figure 5-9 is considered to be
accurate and within the natural scatter of data.

T - o Plane - The data obtained from torsion shear tests on
large hollow cylindrical specimens by Bresler and Pister(45) are
shown on normalized diagrams in Figure 5-10. The 1 - o diagrams in

R ’. R ﬁ\..‘- .‘.-_\. ,(,\ - ‘.‘ N ‘!;:v ‘_, P'.'_‘ L]
AR AN SRR LS T s
o %‘E\\hm s}-x\&}‘ég



P TRE YT

"saue|d |eLxelq (q) pue ‘sweabe(p o-1 (e) uL 433sLd pue u3|saug Aq pawuoguad
$1591 Jedys u0LS40} J0 SI|NSIA YILM UOLUSILUD 3dn|Ley pasodoud jo uostaeduwoy Q|-G dunbiy

ol S0

T

(0= 0l 80 90 14 20 0 to-

o/t o 5]

. ?.cl vb\>b

e
p

028 (ZW/N*% 916°LE)

ZW/5% G'96E = 0

/ ".A _ﬂ (z%/ N 69¥°62)

1o
A
£0

2W3/6% y'00€ = %0

(9)

o . PN
- A e o A I Ll oKl AN Ry

iy

v (zw/NY L62'02)

SRR x LR

0
£0

ZW2/01 6'90Z = %0 9y Ax,

(9)

e T e e Ve T

0%

o
)

L) l.

QTN
\)
. ‘!"::l":: A, .‘

3



R B W W W O T Y T P P T T Ty T T N T I WO R N W T g v o v warm

Figure 5-10(a) corresponds directly to the applied stresses in these
tests, whereas the same test data have been transferred to the bi-
axial planes in Figure 5-10(b). The results of the tests are
located in the compression-tension region of the biaxial plane. The
scatter in tnese data is a little larger than experienced in some of
the other investigations reviewed for this study. Only the (aver-
age) unconfined compressive strengths and the estimated uniaxial
tensile strengths were used for determination of the material para-
meters for the three batches of concrete used in this study. How-

ever, the variation in strength is reasonably well captured by the
proposed failure criterion.

5.3.5 Conclusions

In this section a general, three-dimensional failure criterion
for plain concrete and mortar was formulated in terms of the first
and the third stress invariants of the stress tensor, and it
involves only three independent material parameters. Although
these parameters interact with one another, each parameter
corresponds to each of three failure characteristics of concrete
benavior. These material parameters may be determined from simple
tests such as unconfined compression and triaxial compression or
biaxial tests. For the purpose of including reasonable values of
tensile strengths in the failure entering it is advisable to include
the uniaxial tensile strength in the parameter determination. A
simple expression for evaluation of the uniaxial tensile strength on
the basis of the unconfined compressive strength is given. Twenty-
one sets of good quality data for concrete and mortar have been
included in this study, and comparisons between the proposed failure
criterion and the experimental data are made in biaxial, triaxial,
octahedral, and 1 - o planes. The ability of this criterion to
capture the characteristic of failure in concrete and mortar appears
to be excellent with accuracies generally within the natural scatter
of the test data.

Finally, the above effort represents an important first step
in  the direction of constructing an accurate constitutive

description of plain concrete.
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;Q SECTION 6

. DEVELOPMENT OF IMPROVED CONSTITUTIVE MODEL OF

) REINFORCED CONCRETE

)

R

r%:

6.1  APPROACH AND SCOPE

%‘ The problem of describing the interaction between reinforcing
¢ steel and plain concrete constitutes the most important problem

associated with constructing an accurate model of reinforced con-
crete. In most cases, it is this interaction that dominates the

R0 global behavior of reinforced concrete.

:ﬁ In this section we present the results of a study to explore
ﬂ the use of mixture theory concepts to mathematically describe the
£ interaction of steel and concrete and the global behavior of rein-
d forced concrete, when viewed as a composite material, in the highly
% nonlinear range of deformations. The particular mixture theory
- under study falls into the "mixture-theory-with-microstructure
i category,“(174’175) which has been successfully utilized to model
?; other classes of composite materials,

j§ According to the mixture-theory-with-microstructure approach,
L, the constituents of reinforced concrete, i.e., steel and concrete,
" are modeled at each instant of time as superposed continua in space
{: in a manner similar to a finite element overlay. In contrast to a
Q' standard overlay, however, each continuum is allowed to undergo
% individual deformations. The microstructure of the composite
" material is then simulated by specifying the interactions between
S the continua.

; Within the context of mixture theories, previous 'smearing' of
3 steel and concrete using a volume weighted mixture rule to determine
W stiffness and strength may be viewed as a mixture theory in which

each component (steel, concrete) is constrained to have the same

deformation gradient at the same spatial point. Relaxation of this 4

constraint through an improved mixture framework obtained by micro-

mechanical considerations regarding the interactions of the com- 1

ponents leads to a marked improvement in the simulation capability %

of real material behavior. 1
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As was noted in Section 1, two mixture models are currently
under study. In one, called the Two-Phase Model, steel and concrete
remain distinct materials. In the other, called The Single-Phase
Model, steel and concrete are completely "homogenized" into a new
continuum. Here the identity of the individual constituents is lost.

The advantage of the Two-Phase Model is accuracy and simula-
tion cap ~'lity. That of the Single-Phase Model is analytical
simplicity. In both models, however, the global properties of rein-
forced concrete are synthesized from the properties of the steel and
concrete, the steel-concrete interface physics, and the steel
geometry. The concepts of Single- and Two-Phase Models are depicted
in Figure 6-1.

The key to the development of mixture models for reinforced
concrete is an asymptotic procedure called "multivariable asymptotic
expansions." This mathematical technique may, if properly executed,
be applied to both "dense" and "“sparse" steel layouts. In what
follows the procedure is outlined for a uniaxial dense steel mesh
which may be Tlocally approximated as initially periodic. "Dense"
here may be anything from 1/2 to 5 percent or more steel. Locally
such a mesh typically appears as hexagonal, Figure 6-2, or rectangu-
lar, Figure 6-3. The procedure may, it is emphasized, also be
applied to locally non-periodic geometries such as the beam cross-
section depicted in Figure 6-4. Whether periodic or non-periodic,
the development can always be reduced to the analysis of one or
several typical "cells," Figures 6-2 to 6-4.

In Section I, it was noted that the problem of mathematically
describing reinforced concrete can be divided into several sub-
problems. These include (1) the steel-concrete bond problem, (2) the
steel-concrete dowel problem, (3) the aggregate interlock probiem,
and (4) the steel buckling-concrete spallation problem. Only the
steel-concrete bond problem will be treated herein. This problem
type includes a wide range of practical applications concerning the
nonlinear bending and stretching of reinforced concrete beams,
plates and shells.
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CONCRETE STEEL INTERFACES

ANALYTICAL MIXING PROCEDURE

!
TWO-PHASE MODEL
(STEEL, CONCRETE DISTINCT)

NON-PHENOMENOLOGI CAL
MODEL

(HOMOGENIZED MATERIAL)

PHENOMENOLOGICAL
MODEL

(HOMOGENIZED MATERIAL)

Figure 6-1. Single- and Two-Phase Model concepts.
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Typical Cell

Figure 6-2. Dense mesh, hexagonal layout.

Figure 6-3. Dense mesh, rectangular Tayout.

Cell
#3

cel1 [ —L_Cell

T
#l/eig #2
]

Figure 6-4. Sparse mesh, non-periodic (Beam
cross-section).
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6.2 DEVELOPMENT OF TWO-PHASE MIXTURE RELATIONS

The purpose of this subsection is to review the development of

Y the basic mathematical mixture description of reinforced concrete.

i{ Since the discussion will focus upon the steel-concrete bond
problem, the steel layout may be selected as uniaxial with a local

5 periodic array. For simplicity the discussion 1is restricted to

? static problems.

¥ 6.2.1 Equilibrium Relations - With reference to a typical cell,

Figure 6-5, and a spatial or Eulerian description, the condition of
equilibrium is

re -
T e .

)
Ly aagg)/axj =0 on V(°); a=1,2 , i=1¢to3 (6-1)

R i
¢ where %ij denotes the Cauchy stress tensor, superscript o = 1,2

* 0
E denotes material a (a = 1 represents steel, a = 2 concrete), which ;
5 occupies volume v{e) . Latin and Greek subscripts, with ranges 1 - |
) 3 and 2 - 3 respectively, denote Cartesian tensors and the usual \
¥ i
K indicial (summation) notation. ;
4 ]
i 6.2.2 Constitutive Relations - A wide range of elastic-plastic {
‘ and/or elastic-plastic-brittle fracture material models may be :
p expressed in the form
; :
k| A t
v (a) _ cla) ,(a) .
: 9 = Cijkedxe (6-2a) f
4 where a denotes the Jaumann stress rate; Cijk( is the tangent

2 stiffness tensor, and deﬁ = (avk/axﬁ + avclaxk) is the rate i
; of deformation tensor, where Vi is the velocity vector. Under the 9
L constraint of small deformations, which should suffice for most

reinforced concrete problems, Eq. 6-2a may be approximated by ‘

4 1
y “(a) (a) 2(a) :
: 95 = Cijke®ke (6-2b) ;

+
4
B

T R R
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Figure 6-5. Typical cell and coordinate system.
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where () denotes the usual time derivative (bookkeeping time for
quasi-static problems), and Zekq = (auk/axp + au(/axk) where
e is the Cauchy strain tensor and uj the displacement vector.
The tensor Cijka in Eq. 6-2 is assumed to be independent of the
stress and strain rates but may depend on the current stress and/or
strain states; isotropy of cijkﬂ may not be assumed in general due
to plastic flow and/or prior cracking of the concrete.

6.2.3 Interface Relations - Relations between tractions and dis-
placements for each material across the interface 3&, Figure 6-5,
must be specified to represent the interaction between steel and

concrete. Where slip occurs, an interface stress versus relative
slip condition must be defined. For the present discussion, con-
tinuity of the normal anu tangential displacement components in the
Xps X3 plane will be assumed; displacements in the X1 direc-
tion direction may be discontinuous across .¢1. These conditions
can be written as:

u(l)v = u(Z)v , u(l)s = u(Z)s . (6-3a,b)
Y Y Y Y Y Y Y Y
(1 (2) (1) (2)

oYs)vyvs = 005 Vs + Oys VS5 = Ty VySs (6-3c,d)

where y, § = 2,3 and where vy is the unit outer normal vector to
the surface .4 and Sy is the unit tangent vector to 4. The
relations (6-3a to d) represent, respectively, the continuity of:
(1) the displacement component normal to %, (2) the displacement
component tangent to .% (in the x,, X4 plane), (3) the normal
stress on Jﬁ, and (4) the shear stress on 1 in the tangential
direction. In addition to Eqs. 6-3, a slip condition shall be
assumed in the incremental form

;(1)v = ;(Z)V = C(G{z) - &{1)) = CA& on .%

Iy vy ~ "1y Ty 1 (6-3e)

where C is a tangent modulus which depends on the normal stress on
.ﬁ.and the relative deformation history.

—r .




6.2.4 Microcoordinates - It is to be expected that stress and defor-
mation fields will vary significantly with respect to two basic
length scales: (1) a "global length" typical of the loading con-

dition, body size, or crack pattern, and (2) a "micro length"
typical of the cell planar dimensions. Further, these scales will
differ by at least one order of magnitude in most cases. This
suggests the use of multivariable asymptotic expansions which
commences by introducing the "microcoordinates" x*2, x*3
according to

(x5, x§) = & (x,, x5) (6-4)

where ¢ << 1 is a parameter that represents the ratio of typical
micro-to-macro dimensions of the problem. All functions f(xi) are
next written in the form

f(xi) = F(xl;x:;e) ; 1i=1-~3,vy=2,3 . (6-5a)
Spatial derivatives of a function f(xi) then take the form

of aF af aF 1 of
X T T A S AKX T eaF o Y =23 . (6-5b)
1 1 Y Y Y

For notational convenience in the following development, the func-
tions f and F will both be written simply as f.

6.2.5 Basic Relations: Asymptotic Form - The operations, Eq. 6-5,
when applied to all fixed variables, furnish the basic relations,

Eqns. 6-1 and 6-2b in the new form

s{a) . ola) 2g @)

i i i
aij E'aij =0, x} 0 (6-6)
) -y L o
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where

E

s 1

) * —_

Wy X1=%¢ >

.

b

ela) _ (au(°)/ax + au(°)/ax ), e*(°) 1 (a (°)/ax* + au(°)/ax*),

" k 2 k 2

3

B au{® faxt = 0 ; (6-7b)

" k 1

Wt

t 6.2.6 Periodicity Condition - For a dense mesh (typically one to

;: five percent steel), 1local periodicity in the planar variables

i’ x*z,x*3 may be assumed(175) with respect to all field vari-

U ables. This condition, which allows one to analyze a single typical

ﬁ cell as illustrated in Figures 6-2,3 takes the form:

"

:? f(xi;r*;e;e) = f(xi;r*;e + w3e) on Ty (6-8)

Ay

4

P where r* = rlr(z) and f represents any of the field variables.

|

¥

i

; In the event that the steel does not constitute a dense mesh,

a such as illustrated in Figure 6-4, one must consider several cells

) with boundary conditions on J% that differ from Eq. 6-8. However,

é only a limited number of cell geometries and boundary conditions

; need be considered for steel layouts of practical interest.

k 6.2.7 Smoothing QOperation - According to Eq. 6-4, variations of the

. field variables over global and local (micro) dimensions are repre-

f sented by the explicit dependence on X; and x*i, respectively.

K}

Y That is, all field variables vary "“slowly" with respect to x; and !
Tg rapidly with respect to x*i. In the process of synthesizing a J
\ continuum model of a composite such as reinforced concrete one would

;‘ like to "smooth out" the rapid or micro variations. In view of the ]
ig explicit dependence on x*i, this smoothing process can be easily :
% accomplished by performing averages over the microvariables

- * * o

- X*5,x*3 as follows: i
4 ;
] !
, '
i: !
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LA
e
T
.In?'
L
;3"“'
o (aa) _ 1 (@) (y vyx yx
Jaﬁ f (xi) = %) J/. f (xi,xg,x3)dx§dx§ . (6-9)
v A (G)
:%: (ad)
c The averaged or "global" variables f @9) . where the superscript
%&Q "a" denotes an average over the microstructure, are functions only
A
%{ of the global coordinates x,. The functions fla) 4 Eq. 6-9
a@ﬁ refer to any of the field variables.
[
- 6.2.8 Two-Phase Mixture Equations: Equilibrium and Constitutive -
éﬁa Upon averaging the equilibrium equations 6-6 according to Eq. 6-9,
§
'&k' use of Gauss' Theorem, and application of the periodicity condition
OO0
gﬁa Eq. 6-8, one obtains
C
!.'% (“p)
"tp 3a; . +
wid e 50 Lt J I (6-10)
e ]
}‘:‘.n
where
MR
)
f:::': o(qp) = n(“)a(.“fa) n(a) = A(a)/A (6-11)
e LA iy
e
) represent partial stresses (denoted by the superscript "p") and
gﬁé volume fractions, respectively, and where
§;:;§
e p. = L j[ (@), 4s (i =1-3, v = 2,3) (6-12)
it i T %A 7"17"7 R
“1
Pt
3
! 5 represent "stress interaction" terms which result from the transfer
_\j' of normal and shear stresses across the surface A with unit outer
- normal v, Figure 6-5.
P .
{ A Upon averaging Eq. 6-6, use of Gauss' Theorem, and application
:,g? of the periodicity condition Eq. 6-8, one obtains
5
- “(ap) _ (a). (ad) :(ad) 1*ac,(aa)
s o555 =" Gk &gt DT ke ke (6-13)
290
P4
b
‘s
Wi
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where

&

[}

v = =1 (a)

¢ A

[}

‘ (aa) x(ad) ,

‘: and where Ciij and Cijkﬂ are defined by*

il

: *(Ga) *(“) *dy*x = (u) (“)

CF jke (o) ke dx3dx3 () Cijke®ke ~dx39x% »
A\ A\®

3 (6-15)

X (ad) (aa) _ _1 (a) (a)

: Cijke®e = 7(a) (@) Cijke®ke 9x3dxy .

)

{ The form of Eq. 6-13 is based upon continuity of the component of

: the displacement vector in the XgsX3 plane across Jﬁ (uél) =

L)

\ u&z) on Ji, y = 2,3) but allows Tlongitudinal slip (ugl) +

* uy on Ja). The functions S*ij in Eq. 6-13 represent *“dis-
placement interaction" terms across the boundary Jﬁ. Note that,

? since v = 0, then Sil =0 (i = 1-3).

‘ Equations 6-10 and 6-13 are the two-phase mixture forms of the
equilibrium and constitutive relations. These forms can be in-
terpreted as an overlay of two continua (steel and concrete) which

i interact via Pi and Sij‘ The interaction in Eq. 6-10 appears as

: an effective body force while that in Eg. 6-13 as a modification of

' the strain tensor which resembles a thermal effect.

g 5.2.9 Interaction Terms and Closure - The mixture theory defined by

K]

K Eqs. 6-10 and 6-13 is closed by providing relations between the

§ interaction terms Pi’ Sij and the dependent field (global) vari-
ables u$°a). In addition, the functional dependence of the
tangent moduli Cijki’ C*ijkﬂ on the partial stresses must be

’ specified. To accomplish this task it is necessary to determine the

¥

§

4 *Note that the averages for Cjjk¢ are weighted here and are not

. defined by (6-9).

"
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functional dependence of the field variables on the microcoordinates
x*2,x*3. This dependence is also of direct interest. In par-
ticular, a main feature of the two-phase mixture theory under dev-
elopment is the simulation of stress and deformation fields through-
out the components of the composite, i.e., in the steel and con-

crete, as well as average or global stresses and deformation.

For the purpose of constructing estimates of the "micro-
fields," an asymptotic procedure is used. This commences by ex-
panding the displacements and stresses in each material in a regular

(175) as follows:

0 (a)
nz=% eu1‘zn)(x x}) ,

[+ 9]
2;% JHOCR

asymptotic series

[}

) (x3x8¢)

(6-16)

o) (xyxtse)

The expansions (6-16) are suggested by the form of (6-6) and (6-7a),
and the premise that ¢ << 1.

Upon substituting Eq. 6-16 into Eqs. 6-6, 6-7a and equating
coefficients of each e¢-order, one obtains

9130 K5 =0

S;%n)/ax* = - aaggzn_l)/axj (n>1) , (6-17)
a°§§zn)/axf =0 ,
C(“) . -

1Jkﬂ(o) kQ(o) ’
.( ) (0) ‘(c) a
%3(n) = Ciske(o) (ke (n) * é )] CleQ(l)[ekﬁ (n-1)"® kczn)] *

as'-a-sv ':ﬁv AT HE'EN 'B%'w) "i
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(a) “(a) ey “(a) “x(a)
cleQ(Z)[ekE(n 2)* kﬂ(n 1) * Cijke3)ekn (n-3)*ekc (n-2)
o (a)
g " Sl () ®e0) (6-18)
p
*
fﬁ 1J(n)/’ax =0 ,
»_.:
- where o]J(n) ij(n) =0forncO
o
%; Substitution of Eq. 6-16 into the periodicity condition (6-8)
:ﬁ furnishes:
l‘q
K yle) (a)
(™ a - 4 -
:" 1(n)’ %3 (n) € x* - periodic on ./i . (6-19)
<
iy
:: Now, the interface continuity conditions (6-3a to d) give
[\
41 4,2 Ny (2) -
¢ Uy(m)¥ T Ur(n)y v Uy (m)Sy T Yy(m)Sy (6-20a)
{ (1) (2) (1) (2),
{ %vs(n)%v¥s = %ys(n)yVs * ys(n)Vy s = %ys Vy°s (6-20)
5; while the slip condition, Eq. 6-3e, furnishes
R
&
]"' -(1) _ 0(2) _ . + 3 .
i “Iv(m)¥y = 1y(n)% = &(m2¥0) * Cn-1)2¥(1) T C(n-2)2¥(2)
. (6‘20C)
s : |
.' + + = .o
: cee C(O)AU(n) , N 0,1,2
W
iy .
) where C, , = au, , =0 forn<O
< (n) (n) <
o
"N
:& In addition to Eq. 6-20, one must specify a normalization
5 condition(175) of the form
1%
T:' ol (x:;0) =0 n>l1 (6-21)
Yi(n)\XisY/ = ’ 2 :
o
-
4
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|:¢,t
- Equations 6-17 through 6-21 define a set of so-called micro
‘;:‘: boundary value problems (MBVPs) on the typical cell. For mixture
igé construction purposes only the first few terms of the expressions
;::g: (6-16) need be retained and thus the resulting set of problems is
‘ relatively small. In general, however, they constitute a diffi-
,. cult analytical problem and a comprehensive treatment of this sub-
ject is beyond the scope of this report. For discussion purposes it
&._ will suffice to note that the solutions to the MBVPs can usually be
! cast in the form
BN}
‘,; afh ogxt) = ul® g #lB) Loy k13, (s22)
:" vy =2,3) .
L
Substitution of Eq. 6-22, and a similar form for the stresses
:ﬁ (13()”) , into Egs. 6-12 and 6-14 then provides closure of the
1 mixture model in the form
roe
o Py = Gi(‘;éaa)’ ﬁ‘E"’> , é?j = “ij(‘;lgua)' é‘é"’) (6-23)
s
_ where the expressions (6-23) are linear in the rates.
%9
;.{ 6.3 VALIDATION OF TWO-PHASE MIXTURE RELATIONS FOR STEEL-CONCRETE
‘E§ BOND PROBLEM
. 7\ At this point the mixture problem will be confined to a con- 1
%ﬁ sideration of the steel-concrete bond problem. And for this purpose
\V;n! it will suffice to consider the uniaxial tension-compression case.
»;,,. In particular, in what follows, an attempt is made to simulate mate-
7:* 't rial response from displacement—controlled tension-compression tests
“‘J of reinforced concrete. Of interest is (1) typical behavior as pre-
:T"‘. dicted by the model (simulation capability) and (2) simulation
| accuracy

§§ The uniaxial tension-compression test is an excellent vehicle
v to demonstrate both the simulation capability and the simulation
‘ accuracy of the mixture model. In this respect it should be
‘gé recalled that the behavior of reinforced concrete under direct
%:'
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tension is extremely complex. In monotonic extension one observes
strain softening and subsequent strain hardening. In cyclic loading
one observes stiffness degradation and considerable hysteresis which
is the basis for (composite) material damping. These effects are
the result of progressive cracking of the concrete, degradation of
the steel-concrete bond and subsequent relative slip, and yielding
of the steel rebar. Figures 6-6 and 6-7 illustrate these phenomena
for a reinforced concrete (masonry) specimen with approximately 0.1
percent steel.

6.3.1 Basic Mixture Relations

For illustration purposes, let the rebar layout be uniaxial
and periodic as shown in Figure 6-5. Let a specimen of initial
length 2¢ be subjected to a uniform boundary displacement in the
xl-direction. Then, periodicity of the microstructure (steel
layout) allows us to examine a typical cell as shown in Figure 6-5.
Previous experience with fibrous composite materials leads us to
conclude that a concentric cylinder approximation of this cell will
suffice. The cell may also be envisioned as a classical tension
test with the geometry defined by the steel spacing and volume.

For the problem under consideration, it is appropriate to
model the plain concrete (material 2) as elastic-brittle fracture
(Figure 6-8a), and the steel as elastic-plastic, Figure 6-8b. For
monotonic extension the concrete-steel bond will be modeled as per-
fect below a critical interfacial shear stress, and purely fric-
tional when the critical value is reached and slip occurs (Figures
6-8c,d). For hysteretic 1loading involving tensile load-unload-
reload cycles or tension-compression load-unload-reload cycles, a
more complex bond behavior will be adopted based on recent experi-
mental data.

Now, for simplicity let Poisson's ratio of each material be
zero. Then, solution of the micro boundary value problem appropri-
ate to the case under consideration furnishes the following mixture
relations:
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Figure 6-6. Reinforced concrete (masonry) under cyclic tensile
loading.
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Stiffness degradation in a reinforced concrete (masonry)
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Figure 6-8. Behavior of constituents and steel-concrete interface for
monotonic extension example.
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(a) Equilibrium
ac{%p)/axl = - P1 . aoffp)/axl = P1 . (6-24)
(b) Constitutive
S10) | o (De(D)5008)

é{fp) - n(Z)E(Z)a&{za)/axl.(G-ZS)

*

(c) Interaction term

Py = K(&{lf) - u{?)) if Pp o< Pop (6-26a)
(monotonic)
Py = P san (1) af2)y e o L P, (6-26b)
or
Py = k¥ (&{1°) - &{23)) (cyclic) (6-27)

In the above, recall that "1" and "2" denote steel and con-
crete, respectively; averaged quantities (denoted by the superscript
"a") are defined by Eq. 6-9, or in terms of the cylindrical cell

geometry by (Figure 6-5)

(la)_ 1
O S/

0

(1)
" 2ar( )(l)dr .

(6-28)
[(2)

O (z)21 (1)° f )8
a(r®l et ) (1)

the quantities

A O AL AURCEE LTSRS

AN




o](&p)s n(l)o](.ia) . cﬁp)g n(2)0](§a) (6-29)

2)

are partial stresses and n(l), n( denote volume fractions of

steel and concrete, respectively:

2 2 .
a1) . r(l)///}(z) ; NC R R O (6-30)

The quantities E(l), E(Z),

constant defined by

K* are tangent moduli and K is a

-1
8 1 *
X = m (u_(.n. + .u_%?). ) (6-31a)
where u(l), u(2) are initial shear moduli, (u(“) = E(G)IZ if
ool | 0,, and where |
|
|
(1) |
2 2{n n
Q* = ~ (1 + Y — > . (6-31b)
2 ()2

The critical value Pcr is related to the critical interface shear

stress (°*rx )Cr by (see Figure 6-8d)

(1)
‘Pcr' = EETTT l(°:x1)cr| . (6-31c)

(d) Boundary Conditions ‘

In addition to Eqs 6-24 to 6-27, boundary conditions must be
specified. A complete solution to the tension or tension-compres-
sion problem will necessitate consideration of two sub-problems
involving the following boundary conditions:

Problem No. 1

u{la) = u{Za) = - u, at Xy = o ,

(6.32a)

U](la) = U%Za) =0 at Xl =

T T ST
R R T RO

o



. LAY
s

Problem No. 2

(1a) (2a) _
ul =-uo,011 =0 atxl-—o

(6-32b)
u{la) = U{Za) = 0 at X = ¢ .

6.3.2 Monotonic Extension

Averaged Fields in Each Constituent - Consider now the case of
monotonic  (displacement controlled) extension. The solution
sequence begins by solution of Eqs. 6-24, 6-25 and 6-26a together
with the boundary conditions 6.32a. This corresponds to an initial
specimen in which the concrete is linear and uncracked, the steel is
linear, the steel-concrete bond is perfect, and the boundaries at x
= 0,2¢ suffer uniform extension. This is illustrated as state (1)
of Figure 6-9. The solution to this elementary problem furnishes
the global (effective) stress-strain relation

0(e) = fE(e) (6'33)
where

e(e) = - u0/0 . (6-33a)

O(e) = (1)0]('%6) + n(z)a](ja) ’ (6‘33b)

£ anllel) 4 4(@2)e(2) (6-33¢)

The average or global stresses in the steel and concrete are

(1) (2)
E'V'0o E\Sg
1 1 (2a) ) _ (2)
o{la) =—J£2‘= E( )e(e) s Olla ="—'—(—e—= E e(e)
E E (6-34)
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First cracking of the concrete occurs when the average* con-
ffa) = f{, i.e., when the tensile strength of the
concrete is reached. The corresponding global stress %(e) at this

point is given by

crete stress o

(O(e) cr = E.f /E(z) . (6‘35)

The actual location of the first crack is flaw-dominated. In what
follows it will be assumed that a single initial crack occurs at the
cell center, x = ¢. This is illustrated as state (2) of Figure 6-9.

Subsequent to the first crack one must recompute the field
variables for the state (2) of Figure 6-9. However, state (2) is
mathematically equivalent to state (2'). Consequently, one must
consider a steel-loaded specimen of length 2¢, and the boundary
conditions 6-33b with

—ug =ty (6-36)

An analytical solution of this problem, which includes bond slip,
can be obtained in the form:

Slip Zone (0 < X1< x(p))

(1a) - _ PerX1 c(2a) - Per®t ) 6-37a.b)
o1 ) =g -y oo M) =y s (6937
a;xl(xl) - r(l)Pcr//Zn(l) : (6-37¢)

*Specification of failure in terms of local stresses has been
investigated and was found to not alter the results significantly
for this probiem.
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» LA

(13)(x

upt (%)) =

+

) (x))

Perfect Bond Zone

°§%a)(*1) =

0*(X)=Y’
rXy 1

uila)(x

2 0xy) =

P A,D,.‘

P 2 2 °§eg
= Zn(jc);(j) (X(p)-xl) - N E (x(p) - Xl)

%°(e)
(x(py £ x<0)

(1) 2) P _x, \E cosh g(€-x,)
°(e)¢ . nl2! ( cr’ (p) ) 1 ]
._J%?———- [1 ;TIjoTT 1- n(z)E(z)O(e) cosh B(Q-x(p))

(6-39a)
[ e E(z) cosh B(Q—Xl) ( Pch( )E )
= T O (= B __—__%77—T77 '
E (p) O(e)n E
(6-39b)
Defis - oft /) w150
(2) (2, ( P X, \E sinh 8(0-x4) ]
n‘“’t cr (p) 1
'}%“ [(x -0) ;;TTTETTT 1- n(2)E(2)°(e)> cosh B(Q—{p))

47 ‘\\\ \'(x‘ T,

'~0J heatt

e il adhh abi LA aak A2a n il oiNA ata LBl -r--v-n-vvns-r—:T

) . (6-38a)
o (2)(2 P X
_(e) g - E (} _ e ip) ) tanh 8(f-x, ),
= | e\ e, (p)
P 2 2y . 2e
- e Ky T ?l Xp)= 1)

P X, \E
1 . -
v3 (1 - ;%%7é%%7__-_-)tanh 8( ¢ - X(P)) + (6-38b)

(6-40a)

sinh -
(e) [(X —0) + l.(l - Zcrx(p)E > - 8{€-x;) ) ]
T 1 8 ;T’)E(Z)a(e) coS e(a-x(p)
(6-40b)
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where

2 _ 1 + 1 -
B = K(W W) R (6-41)

By X J..‘

A1l functions in the interval £< x < 2{ can be obtained from Eqgs.
637 to 6-40 and symmetry.

The foregoing stresses and displacements are illustrated in
Figure 6-10 for typical material properties. The interval 0 < x <

[ A, o

x(p) represents a zone of interfacial slip while the interval

x“)) < x < € represents an interval of perfect steel-concrete
bond. The transition point X(p) is obtained by setting

-

PN it A e,

in Eq. 6-38a and solving (numerically) the resulting transcendental
relation for x(p); this is the steel displacement corresponding to
the first crack in the concrete.

e

Consider now Figure 6-9 again. Examination of Eq. 6-37b and
6-39b, which define the concrete (average) stress distributions,
reveals that max. o%?a) occurs at x = ¢ of problem (2') which

corresponds to the boundary of problem (1). Consequently, if the

P X W

N concrete at the cell boundary is allowed to crack, then a new crack
will initiate at x = ¢ of problem (2') when §f§%z) of Eq. 6-39b
reaches the value f't, and the crack pattern of the entire cell
_ corresponds to that shown in Figure 6-9. The value of %(e)
b corresponding to fracture is obtained from Eq. 6-39b by setting
ii 2) = f' ; the steel has extended at this point by the amount
g of 2u{!3)(0) where the latter is obtained by substituting the
, v?l:? of %(e) above into Eg. 6-40a; this corresponds to e(e) =
4 w24 (0) /8 =u /1.

t Subsequent to the initiation of the above crack pattern, one
ﬁ must recompute the field variables in each material. This is shown
as problem (3) of Figure 6-9 which is mathematically equivalent to
problem (3'). However, it is evident that (3') is obtained from

- - & - )

252

i - . s . . A -
) }.‘ .“(q[. “w ".-_,‘u‘q‘w .q [ .‘c L0 ."}u‘ :‘ L.\"\ A

" U TR RN AFY I N MNTHE Nob T ({‘ e IR N T T e Y
_r.” ‘l .‘ }‘} ot P P A‘i" RSSO0 - ) Y \d ~ o Rle s wmoet 0 Ve S

Up 1%y ' ‘ ‘ ’ ) ! (9 S9N I pITN A AR AT IR
BN DN OCTRPL TP o O L4 T X INN ..'.‘a':: DR Yo Yol iy e N R 2 XY O (Gl o fated N5 L 6l



¢
l,"’!f-' PR

T T T T Y N N N AR W X Y W N U U R RO WS W W Ty Wy e

Figure 6-10.
after (x's)

TN R e E

B 5. \‘ \ -' Y
R R R e s NG

-----------

concrete cracking at x

= 700 psi and concrete tensile strength

''''''

\-_“,.. T
".

j i 2% = 64"
A =
1 r.—. 4 Zr(]) = .625"
Crack
(2) 6 25"
3
(]a) X X X X XX XX x X X XX
oqq " (x) 2 /ﬁ X x xX X
(]02 ) . f X X
si
P 1 X X \
* - X
a. Concrete stress distribution
3
(2a)
ory (%) ) x K
(10* psi) X x
1 x X
4}! X: e ==X
- — X
b. Steel stress distribution
GT
X XX e ==slip
%ex (r(]) ) 41 X X
(]0 pSl) Z‘f b 4 X
Tl X X X
X X, { X
c. Bond stress distribution

Typical stress distributions prior to (solid lines) and

% for bond strength
= 230 psi.

‘‘‘‘‘




(2') by replacing 22 by 2. Thus, the field variables may be
3 obtained from Eqs. 6-37 - 6-40 by simply replacing g2 by 2/2. This
suggests the following solution sequence:

1. Consider a uniformly extended, Gncracked specimen of
length 22. ((1) of Figure 6-9.) Let u, denote
this extension.

2. After the first crack, consider a steel-loaded

specimen of length 2 . ((2) of Figure 6-9.) Find

the equilibrium state corresponding to e(

e)
- uglt = £ e(3),

M

3. Continue Tloading (extending) until a(za)(l), given
by the perfect bond solution, reaches f' Let

>
-

e*(i) be the effective strain at failure.

et
Al

4. Reduce the length of the steel-loaded specimen by
1/2 (corresponding to (3') of Figure 6-9) and find
an equilibrium state for the new length
corresponding to e(e) = e*(i).

5. i =1+ 1: Repeat steps 3 and 4.

The above sequence is illustrated schematically in Figure 6-9.

=

Composite Global Fields - Equations 6-37 through 6-40 furnish
the average stresses and displacements in each constituent. One may

also completely homogenize the steel and concrete at this point by

-é defining %e)* ©(e) S the “effective" stress, strain for the

> specimen, respectively. Thus:

<

-pP_E
_ (1) (la) , (2) (2a) _ cr N -1
O(E) =N 011 n 011 = W X(p) (B tanh B(,Q, X(p))

*

: (2-43a)

o

]
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b
R o) - a2 (g) __%e) (X(P) - 1)_ [%é%ﬁé?%_ (_l)
- BY
P WY n
oo € [} E 2 E
oS
ﬁ ¥ _
) P.x, E
'ﬁsf . {1 - cr_(p) tanh 8(g-x, )
A e
238
. 2
L P
ntllg(lle 5, (gl

f; ? Given Eqs. 6-43a,b, an effective secant modulus can be defined by:
Y
R3S
i (e) = (XSE) ) n(Z)E(2)< Per*(p)E
SAN £ =-F -1) - 1- )tanh g(2-x
5 (&) T i s ellT \' ™ ST (e, (v}
S
Koo
s
-"(.' 2 -1
N . °<e>*(§> _Per*ip) (6-44)
o (Lg% (D,
ks
;5}3 A tangent modulus can be similarly defined by utilizirg increments
k4 of the effective stress and strain.

C. Typical Behavior. Let us now examine the typical simulation

character of the mixture model for monotonic extension when both
bond slip and concrete cracking are present. For this purpose con-
sider a hypothetical laboratory test. In the Tlaboratory one would

;5;$5 measure the total tensile force applied to a specimen and the
jfi overall change in length. If one divides the former by the total
'iig specimen cross-sectional area and the latter by the original
- specimen length, then one obtains the effective stress %(e) and
ﬁ the effective strain e(e), respectively. It is appropriate,
E:i? therefore, to employ these quantities as response measures.

Figures 6-11la,b illustrate typical graphs of effective stress

versus effective strain for a steel volume fraction of -one percent,
a steel-concrete bond strength of three times the concrete tensile
strength, and an initial crack length of ? = 10r(2) (e = 0.10)
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where Zr(z) is the "cell" diameter. The stress drops represent
the formation of new c¢racks in the concrete. One would expect such
cracks to lead to stiffness degradation. This is illustrated in
Figures 6-llc,d where the normalized effective modulus E(e)IF' is
graphed versus the normalized effective strain e(e) f /E(z)
for the aforementioned parameter values. As can be observed, the
degradation in specimen stiffness, as measured here by the secant

modulus, E(e)' is severe.

The behavior depicted by Figures 6-1la-d can be partitioned
into three stages as shown in Figure 6-11d. In Stage I, the
concrete is uncracked, the steel-concrete bond is perfect, and the
response is elastic. The beginning of Stage Il corresponds to the
first concrete crack; during this stage the number of cracks
increases as the effective strain increases and the major decrease
in the effective specimen stiffness occurs; cracking is manifested
by drops in the effective stress; the effective stress versus
effective strain curve is discontinuous but the mean effective
stress remains relatively constant (Figure 6-11b). Cracking of the
concrete ceases at the end of Stage II and Stage IIl corresponds to
bond slip without further cracking; yielding of the rebar generally
occurs in this stage. Both Stages II and III represent highly
nonlinear behavior.

Consider next an actual laboratory test. Figure 6-12a shows
the results of two such tests on the wire reinforced mortar specimen
illustrated in Figure 6-13. The specimen was subjected to monotonic
extension via a displacement-controlled test system. The authors of
this data describe three basic stages of material behavior; they
correspond exactly to the stages defined above for the simulation of
material response using the mixture model. The stress drops in
Figure 6-12 correspond, as with the simulation, to the formation of
new cracks in the concrete. Vertical stress drops are not observed
in the test results as a consequence of inadequate system
stiffness. Vertical drops require an extremely stiff test system
and precision displacement control; as the test system stiffness
decreases the drops become smeared as indicated in Figure 6-12.
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Figure 6-12a,b. Response of wire-reinforced test specimen under
monotonic extension.
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In view of the above, one concludes that the global response
predicted by the mixture model embodies all of the basic features of
actual material response for monotonic extension. Consequently, it
can be stated that the mixture model is capable of realistic
response simulation for monotonic extension.

Typical Accuracy. Theory versus Experiment

In order to validate the mixture model, a set of accurate and
complete test data is necessary. Unfortunately, appropriate test
data on full-scale reinforced concrete is currently not available
for monotonic extension. However, data on scaled reinforced
concrete is available in the form of a test series by Somayaji and
Shah(176’177) on wire-reinforced mortar. In an effort to explore
the simulation accuracy of the mixture model, several specimens in
this test series were investigated. Figure 6-14 shows the results
of one such simulation for monotonic extension. The specimen
geometry is illustrated in Figure 6-13. The component and interface

properties were deduced from component and pullout test data.

The agreement between synthesized and measured effective
stress, effective strain, and total number of cracks (over the
specimen gage length between the notches in Figure 6-13) is seen to
be good over most of the strain interval shown. The disagreement in
final slopes is believed to be due to pullout of the wires from the
specimen end sections at the original groove locations (see Figure
6-13).

In view of the above, it is concluded that the mixture model
is capable of accurate simulations of real material behavior for
monotaonic extension.

6.3.3 Hysteretic Extension

Typical Behavior. Let us now turn to hysteretic extension in-
volving load-unload-reload cycles. For such deformation an analyti-
cal solution of Eqs. 2-24, 2-25, 2-27 and 2-33b is not feasible.
Consequently, the mixture relations were discretized and a numerical
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solution was carried out. The details of the numerics will not be
presented herein. It is noted that the resulting numerical program
was validated by comparing numerical and analytical results for the
case of monotonic extension.

For hysteretic deformation it is necessary to extend the de-
scription of the steel-concrete interface bond, i.e., to provide a
definition of the tangent stiffness K* in Eq. 2.27 for arbitrary
interface slip histories. Figure 6-15a illustrates the slip law
adopted for unloading to zero effective stress while Figure 6-15b
depicts the slip law used for tension-compression load-unload-reload
cycles. Both bond slip descriptions reflect recent data*(178) on

steel-concrete bond slip behavior.

Typical hysteretic response of the mixture model for unloading
to zero effective stress 1is illustrated in Figure 6-16. The
similarity of this response with the test data shown in Figure 6-6
is evident. Although the strain histories differ,** it can be
observed that the mixture model exhibits all of the basic features
of real material behavior. These include stress drops due to
progressive cracking, stiffness degradation due to cracking and bond
slip, strain hardening due to load transfer to the steel, and
hysteresis due to bond slip.

A single cycle of response for tension-compression cyclic
loading is shown in Figure 6-17 for the mixture model and Figure

*The vast majority of pullout and tension test data in the
literature are not of sufficient quality or completeness to be
useful for model validation purposes. Most such tests have been
conducted without any material model in mind. Consequently the
objectives of the test are not clear. Additional experiments
devoted specifically to mixture model validation are needed.

**The test specimen was subjected to reversed (compresssive) loading
resulting in a return to zero effective strain while the model was
subjected to unload-reload cycles to zero effective stress. In
addition, the peak (first crack) test specimen stress is not shown
in Figure 6-16.
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Fiqure 6-15a. Bond Slip Law for Unloading to
Zero Effective Stress.
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Figure 6-15b. Bond S1ip Law for Cyclic Deformation.
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Figure 6-16. Mixture model response under cyclic loading.
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Figure 6-17. Single cycle of deformation for
mixture model.
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6-18 for an actual test specimen. In this case the simulation in-
cludes both opening and closing of cracks and reversed bond slip.
Once again one observes a realistic simulation of hysteretic
material response.

In view of the above it may be concluded that the mixture
model is capable of realistic material simulations for hysteretic
deformations.

Typical Accuracy: Theory versus Experiment. For the purpose

of validating the mixture model for hysteretic deformations, the
(179)

test data of Hegemier et al is selected. This is apparently
the only data available on full-scale materials. The material, it
should be noted, is reinforced concrete masonry. However, the
concrete (grout) cells constitute the primary structural components
subsequent to first cracking. Consequently the data is applicable

to the present validation probliem.

A theory versus experiment comparison of the effective stress
versus effective strain envelope is shown in Figure 6-19. This
envelope exhibits reasonably good agreement. The number of
theoretical cracks agree with the observed test specimen cracks.

Figure 6-20 compares theoretical and experimental stiffness
degradation. Here the agreement is seen to be excellent.

In view of the above, it is concluded that the mixture model
is capable of accurate nonlinear simulations of real material
response.

6.3.4 Influence of Basic Parameters.

In subsection 6.3.2 and 6.3.3 it was demonstrated that the
mixture model is capable of accurate simulations of material re-
sponse. One is therefore in a position to utilize this simulation
tool to investigate the influence of the basic input parameters. It
is instructive to do so at this point.
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Initial Crack Spacing. The quantity 2¢ defines the initial

K crack spacing (see Figure 6-9). It is expected that a practical
range for this parameter is (in nondimensional form) representea by
0.04 < e < 0.25. Figure 6-21 shows the typical effect of the
initial crack spacing in this range on the effective stiffness. The
latter is observed to depend weakly on e. This is fortunate from

two viewpoints: (1) in most problems the location of the first
crack is flaw dominated and is not known from a deterministic

=
e

standpoint; (2) in the process of complete homogenization (single
phase mixture) one seeks a continuum model without explicit
dependence on initial crack location. With respect to item (2),
: such a model can be constructed by averaging out the e-dependence

over the e-interval of interest. The dashed curve on Figure 6-22

S NI F ML

represents such an average, obtained here by a least squares fit of
the data to the curve

. 6-45
: Qe); (n(l)fi(l)+b>+ 1 ( )
‘, t \ € I

2
: [1 (nu)Eu) X b)‘ °] 2(e)* 2€(e)
5 T

with, b = 0.034, a = 0.30 + 58.5 n{1),

e

A,

é This elementary expression is observed to be a good representation
of stiffness degradation.

\ Bond Strength. Steel-concrete bond strength can be expected
to be in the range f{ < (o*

rder <3 f{, i.e., from one to
three times the concrete tensile strength. Figure 6-23 illustrates
the typical effect that this variation has on effective stiffness;
Figure 6-24 depicts the typical influence on the effective stress-
strain response. The result is surprising: for monotonic =xtension
' the model indicates that response is weakly dependent on bond
g strength. Care must be exercized in the interpretation of this
- result, however. The foregoing simulations apply to a steel-pull

tension test, Figure 6-9. For example, one would expect a strong

dependence of bond strength on the response of a pull-out test.

Thus, the importance of bond strength may be problem dependent.
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Steel Volume. Figures 6-25,26 show the dependence of effec-
tive stiffness and effective stress-strain response on the steel
volume fraction, n(l). As one would expect, the response is a

strong function of the steel volume fraction.*

6.3.5 Recovery of Microstructure

In the foregoing discussion only averaged field variables in
each constituent were considered. The mixture construction
procedure used, however, also allows one to describe the local
variations of the field variables to a certain (asymptotic) degree
of accuracy. For example, the axial components of displacement can
be written as

[(2)%, < 2 (1) >
(1) _ .(1a) , 1 LR (6-46a)
i (DI \ (22 =72

(2)2p 2 (1) 1)y, 1)
. (2 2 1 * *\ 3 1
“{ = “{ Y ;n(Z)u(Z) < ;)2 - jm<‘r,r‘(25>‘ 7" : F - —3 > .

Figures 6-27a,b show typical local variations of the field
‘variables at a specific axial location. Such detailed information
is of interest if one is concerned with items such as local cone
failures which are common to steel-pull tension tests.

6.4 REMARKS

The steel-concrete bond problem examined in the foregoing
sections corresponds to the special case where the principal stress
directions and steel layout directions coincide, and where concrete
cracking, bond slip, and steel-yield dominate natural response.
Examination of this case reveals that the mixture approach provides
exceptional modeling capability for both monotonic and hysteretic

*The data in Figure 6-25 is based on Equation 6-45 which, in view of
the weak dependence on bond strength, does not depend on bond
strength.
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Figure 6-27a. Local axial displacements in steel and concrete a
distance 2.4 in from crack face. Axial displacements
normalized on cross-sectional average in concrete.
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Figure 6-27b.

Immediately before 1st crack
(22 = 64")

=]

4.0r

3.0

Immediately after 1st crack
(29. = 32")

- 3,260

. __,ﬁ”= .3125"

Variation of local axial stress in steel and concrete a
distance 2.5 from crack face. Axial stresses normalized

on cross-sectional average of each material.
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deformations with relatively few model input parameters. In par-
ticular, global stress and deformation fields and important global
nonlinear response measures concerning stiffness degradation, strain
softening, strain hardening, and hysteresis (damping) can be
accurately simulated. Most important is the conclusion that the
above global features can be synthesized from elementary material
property data on the constituents (steel and concrete) and the
constituent interfaces (steel-concrete interfaces). Finally, in
addition to global quantities, local stress and deformation fields
in the steel, the concrete, and at steel-concrete interfaces can be
simulated to a certain degree of accuracy.

It was noted previously that a significant number of problems
fall into the category above, i.e., where the principal stress
directions coincide with the primary steel layout directions. These
include beams, plates and shells subject to bending and/or nonlinear
membrane action, but with negligible in- and out-of-plane shear
stresses. These modes of behavior are relevant to both shell and
box (plate)-type protective reinforced concrete structures, for
example, in regions sufficiently far from -upport boundaries or
constraints.

6.5 ON SINGLE-PHASE MODELS

In Section I it was noted that single-phase models are of
interest because of their mathematical and numerical simplicity. In
particular, one expects the mathematical formulation of a single-
phase model to be easily implemented into current finite element
programs.

There are, in principle, two ways to construct a single phase
model of reinforced concrete. One is to perform an appropriate
mathematical smoothing operation on the two-phase mixture model.
This, however, is a difficult task that, if not perfcrmed properly,
can lead to considerable loss in simulation capability and
accuracy. Mathematical homogenization to furnish a single-phase
model has been studied but as yet the appropriate procadure has not
been discovered.
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Figure 6-23. R/C stiffness behavior in (a) tencion, (b) compression.
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Another approach is to postulate a phenomenological single-

phase model and then to evaluate the model parameters or functions

by using 'data' produced by the Two-Phase Model. This approach is

very attractive since: (1) one has much more control over two-phase

model simulations than one does over an experiment; (2) two-phase

model simulations are much less costly than actual experiments; and
(3) the accuracy of the Two-Phase Model has been demonstrated to be
excellent (at least as far as it has been developed).

To illustrate the phenomenological approach, let us adopt a

plastic-fracture model of reinforced concrete (see Section 5.1).

For simplicity, let us focus on biaxial behavior, i.e., let us

consider two-dimensional composites.

Within the context of two-dimensional composites, consider
Figure 6-28. Experimental data reveals that, if the maximum princi-
pal normal stress is positive, then stiffness degradation occurs
immediately and continues until the onset of steel yielding after
which it essentially ceases. This is demonstrated in Figure 6-28(a)

for uniaxial tension. In contrast, if the maximum principal normal
stress is negative, then stiffness degradation does not commence

until one reaches a strain corresponding to approximately the ulti-
mate stress in monotonic deformation. This is demonstrated in

Figure 6-28(b) for uniaxial compression.

Information of the above type indicates that one should
associate the initial fracture surface in the Dougill fracture
element with the initiation of concrete fracture in quadrants I,




mwwreTwwTe e vy -

II, and IV of (biaxial) stress space, and with max ¢ , along a path
corresponding to monotonic deformation in strain space, in quandrant
I[II of (biaxial) stress space. An elementary initial fracture
surface in (biaxial) strain space satisfying these conditions is
shown in Figure 6-29. The associated surface in stress space, and a
comparison of this surface with actual test data, is shown in Figure
6-30. Considering the scatter in test data, and the fact that
fracture and ultimate stress surfaces need not coincide exactly
(stiffness degradation may commence prior to ultimate stress), the
comparison indicates that the assumed initial fracture surface is,
although elementary, a reasonable approximation of test data (A
Coulomb model is also shown in Figure 6-30 for comparison purposes).

Let us focus now on quadrants I, II and IV of strain space.
For strain paths in theze regions plastic effects are not signifi-
cant until the onset of steel-yielding. Consequently, prior to
yielding of the rebar, a single Dougill fracture element is
appropriate.

Since the fracture surface selected is piecewise linear, the
loading function F can be written in the form

N
2o (O s ) (6-47)

where %(n) are weight functions with the value 1 or 0, and h(n)
= h(n)(D), where D is the dissipation function:

€. (6-48)

Here °§j is defined by

f 2__do - :
955 = - By ) (333)(n) Pk (n) ke FF=F=0,

: . (6-49)
°§j =0 ifFc<OQor ifF=0andF <0
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Figure 6-30. Initial biaxial fracture surface in stress spece
Tp07 denote principal stresses.
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a0 Figure 6-31. Principal coordinates (x],xz) and reference
N coordinates (x1' ,xé).
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The resulting constitutive relation is of the form

835 = Cijzracke * %5 -

(6-50)
The initial moduli cijk2(°) must be specified (i.e., uncracked
elastic properties). Subsequent stiffness moduli are computed from:

°f
Cijke = °ij(*kg)(n)//“(n) (6-51)

Given the above phenomenological model, the problem is now to
define suitable functional forms for h(n)(D), and to prescribe the
variables ‘ij' Let us consider the latter, i.e., the prescription
of *ij' One possibility is depicted in Figure 6-29 for the path
shown. Here the *ij are constants and each linear surface segment
undergoes isotropic expansion. In this case properties in the
2-direction are not influenced by extension in the l-direction. In
terms of an arbitrary reference coordinate system x', (Figure

i
6-31), the loading function in this case has the form

F = *%j e%j - h(D) (i, = 1,2) , (6-52)

where (6-52) corresponds to n = 1 (the subscript ‘n' is dropped in
what follows)and where

' 1+cos2e ' 1-cos2e Vo ed _

My = s Aoy = , 2x12 = sin2e . (6-53)
The angle o in (6-53) denotes the angle between the principal and
reference l-axis, Figure 6-31. The stresses in the reference

coordinate system are given by

: . f .
O%j = C%Jklcil + a1j ('I,J,k,l = 1,2) (6—54)
where

ey

..,‘{v

'-_Q"‘.id

b
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f' %aﬁ xkz b, i F=F=0(i,d,ke =1,2)  (6-55)

Examination of the relations (6-52) - (6-55) reveals realistic
simulation of material stiffness degradation with an appropriate
choice of the dissipation function D. For example, the effective
shear modulus of a specimen degrades with increasing shear strain
eiz and further, this degradation is a function the extension of
the specimen. Figure 6-32 depicts an example situation where a
specimen is first extended (e'l1 # 0 only), then subjected to
shear deformation (e'lz) with 6'11 = constant.

Additional coupling can be obtained by allowing the surface to
rotate as well as translate in strain space. Figure 6-33 illustrates
a candidate model where, for the path shown,

. 1+cos2e l-cos2e
M =T — + (h-0.1) —

At o l-cosze , (h=0.1) 1+cos2e

22 ’ (6-56)

inz = (1.1-h) sin 2¢ .

Let us focus upon the case of Aj; = const., and consider the

ij
next problem - that of specifying the form of h(D). For the surface

n=1, one has
Xll = 1 'y x22 = klz = 0 . (6-57)

Thus, during loading, one has, in the principal strain coordinates,

o =-ER o s (6-58)
h = cll 0 (6—59)
- 2 d0

E= Gy --2%;, . (6-60)
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o Figure 6-32. Influence of initial normal strain on shear modulus.
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Figure 6-33.
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Initial and subsequent biaxial fracture surfaces in
strain space. €1+ denote principal strains.
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Equations (6-59) and (6-60) furnish

dE 2 dD
T o9 = -7 q % (6-61)
11 €11 11
Thus,
1 2 dE
D= - 2‘ ftll ‘a’EH dell + DO . (6-62)

Now, from the two-phase simulation (Section 6.3), the fol-
lowing form was found to accurately represent E versus €11°

-1
E=a * [(I:%I - az) ey * aze§1] (6-63)

where al,a2 are constants. Hence

dE (by*2byeqy) (6-64)
de - 2 +b )Z -
11 epy(by*byeqg
where
b, =v—— -a, ,b,=a (6-65)
1" T3 ~ %2 »%2%% -

The dissipation function corresponding to the stiffness degradation
function (6-63) can be found by substituting (6-64) into (6-62):

D = ?f , deyy + 0, . (6-66)
(b +bz 11)

Performing the integration gives

b (by*b,eq )

1 [ 1 an \P1792¢11 ]

D = + +D (6-67)
b2 L2TBy %) ! o
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TQ: The constant of integration can be evaluated from the condition
D[(cll)cr] = 0, where (ell)Cr corresponds to the strain at
e first fracture:

$
e 0. 2 1 . InfPr*Palegg)ey (6-6)
07 By | 2y ple 1 Ty by i
o
éﬁ Using (6-68), D can be written as
a |
K D=b [ C1)eren B ( ! )] (6-69) |
AR CA T U Ty |
e ~ |
SS where i
w (
4 _ b 1
fﬂ b3 = 5;-- a,(1-a 1 . (6-70) \
% 1 The form (6-69) indicates that the appropriate dissipation function
v for any strain path activating the n = 1 surface is
4 h_ - h b,+h
g D - b3[2b2(b§§h)(b3+hcr) g o (Eg%ﬁ;)] , (6-71)
]
- The quantity hcr = (0.1)f'c/Ec in the above example, where
3{ Ec denotes the (uncracked) Young's modulus for concrete. Typical
ﬂ‘ uniaxial stress-strain response versus volume fraction is depicted
K in Figure 6-34 while Figure 6-35 shows the associated stiffness
N (normalized) degradation. The corresponding (normalized) dissipa-
3: tion function is graphed in Figure 6-36.
i3 The above curves represent the "macro" monotonic response of
- reinforced concrete to uniaxial tension in the direction of the |
7 reinforcement. The Two-Phase Model parameter study noted previously

) indicated that the residual strain due to bond slip where the
'{3 specimen was unloaded to zero stress was negligible. Only when the
L. steel began -to yield did the residual strains become significant.
3( Further, in all cases, the stiffness modulus was essentially ]
:* constant immediately before yielding began. This suggests, for i
:ﬁ incorporation of yielding, a simple superposition of fracturing and
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Figure 6-34. Single-phase model simulation of stress versus
strain.
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NORMAL 1ZED EFFECTIVE MODULUS
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INFLUENCE OF STEEL VOLUME FRACTICN
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plasticity models and a division of response into three connective
stages of response for extension:

I. Linear Elastic
Il. Progressive fracturing with stiffness degradation

ITI. Yielding with strain hardening and constant elastic
moduli.

296

LAY '."-J ATV 'n';; o

L L ‘
- d h A >
Sl Yot .:'f\:'its DAL }k ; .l, W, b




SECTION 7
CONCLUDING REMARKS

The following were presented in this report: (1) a state-of-
the-art review of plain and reinforced concrete data and models, (2)
progress made to-date concerning the development of an improved
nonlinear plain concrete model and (3) progress made to-date on the
construction of a nonlinear model for reinforced concrete.

Discussion in the first area included a very comprehensive
review and evaluation of the experimental and theoretical literature
on plain concrete, and steel-concrete interaction. In the area of
plain concrete it was noted that improvement is needed in the
mathematical description of yield and failure surface geometry,
strain softening, stiffness degradation, and strain rate effects.
In the area of reinforced concrete it was noted that the manner in
which steel and concrete are conventionally mixed analytically is in
need of considerable improvement. Problems in this area were
classified into four basic groups: (1) the steel-concrete bond
problem, (2) the steel-concrete dowel problem, (3) the aggregate
interlock problem, and (4) the steel buckling-concrete spallation
problem.

Discussion in the second area focused upon the development of
an improved failure surface for plain concrete. Such a surface
plays an important role in the mathematical description of plain
concrete. A three parameter surface was postulated and shown to
provide an excellent fit to uniaxial, biaxial, and triaxial experi-
mental data on plain concrete. The failure surface is written in
terms of two stress invariants.

Discussion in the third area focused upon the development of a
mixture theory with microstructure to model reinforced concrete.
Attention here was confined to the steel-concrete bond problem. A
general theoretical framework was presented and the resulting theory
was 'closed' for a class of probiems. Comparisons of experimental
data and theoretical simulations were made for monotonic and cyclic
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uniaxial extension. These comparisons revealed excellent simula-
tion capability and accuracy. In particular, strain hardening,
strain softening, stiffness degradation, and hysteresis were
properly simulated. Consequently, the mixture theory approach
appears to offer considerable improvement in simulation capability.

It is recommended that priority for future developments in
this area be given to (1) an appropriate combination of plastic and
fracturing elements for plain concrete, (2) the steel-concrete dowel
problem for reinforced concrete and (3) the strain rate problem for
plain concrete.

With respect to item (1) it 1is noted that procedures for
combining plastic and fracturing elements have remained arbitrary up
to this point. A comprehensive study of series, parallel, and
various weighted techniques is necessary in order to fully under-
stand the implications of each model.

Item (2) above constitutes the next basic step in the mixture
theory construction process. This is a difficult task which will
require a combined theoretical and experimental effort.

Item (3) has not been seriously approached in the literature
as yet. In particular, virtually all current models of plain and
reinforced concrete are strain rate independent. This is in
contrast to the vast majority of the defense community-related
problems which involve high strain rates. Consequently, an effort
should be made to incorporate strain rate effects into a constitu-
\ tive model of plain and reinforced concrete. Two avenues are open
: in this subject area. One is the use of a viscoplastic model in
place of the current rate independent plastic element. The other is
P the use of the endochronic theory with time included in the defini-
3 tion of the intrinsic time variable.
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